|
[1] Adams R. A. Sobolev Spaces. Academic Press, New York, 1975. [2] Antoni Zygmund and Richard L. Wheeden. Measure and Integral, An Introduction to Real Analysis. [3] B. Gidas, Ni, W. M., and L. Nirenberg. Symmetry of positive solutions of Part A, 369-402. Advances in Mathematics Supplementary Studies, 7. Academic, New York- London, 1981. [4] D. Gilbarg and N.S. Trudinger. Elliptic partial differential equation of second order. 2nd ed. Grundlehren der Mathematischen Wissenschaften, 224. springer, Berlin, 1983. [5] Enrico Giusti Direct methods in the calculus of variations, Singapore ; River Edge, NJ : World Scientific, 2003. [6] Haim Brezis. Functional Analysis, Sobolev space and Partial Differential Equation. [7] H. Berestycki and P.L.Lions. Nonlinear Scalar Field Equation. Arch. Ration. Mech. Anal. 82: 313-375, 1983. [8] H. Royden and P. Fitzpatrick. Real Analysis. 4ed. [9] J. Bergh and J. Löfström Interpolation spaces. Springer, New York, 1976. [10] Jindrich Necas Direct methods in the theory of elliptic equations, Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2012. [11] Lawrence C. Evans. Partial Differential Equation, 1ed. [12] Lawrence C. Evans. Weak Convergence Methods for Nonlinear Partial Differential Equations , GBMS Vol.74, American. Society, 1990. [13] M. K. Kwong. Uniqueness of positive solutions of . Arch. Ration. Mech. Anal. 105(3):243-266, 1989. [14] M. I. Weinstein. Nonlinear Schrödinger equation and sharp interpolation estimates. Comm. Math. Phys. 87:567-576, 1985. [15] M. Struwe. Variational methods : applications to nonlinear partial differential equations and Hamiltonian systems, 2006. [16] Mihlin S.G. Variational methods in Mathematical Physics. State Publishing House for Technical Literature, 1957. [17] Philppe G. Ciarlet. Linear and Nonlinear Functional Analysis with Application. [18] P. L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. Inst. Poincaré Anal. Nonlineaire, 1, 1984. [19] P. L. Lions. The concentration-compactness principle in the calculus of variations The limit case, Rev. Mat. Iberoamericano, 1, 1985. [20] S. Laurent Aspects of Sobolev-Type Inequalities, Cambridge University Press, 2002. [21] T. Cazenave and P.L.Lions. Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85(4):549-561, 1982. [22] T. Cazenave. Semilinear Schrödinger Equations . [23] T. Cazenave. An introduction to nonlinear Schrödinger equations. [24] Talenti G. Best constants in Sobolev inequality, Annali di Mat., 110, 353-372, 1976. [25] Walter A. Strauss Partial Differential Equations: An Introduction, 2ed. [26] Zeidler, Eberhard Applied functional analysis: Variational Methods and Optimization. Applied Mathematical Sciences 109. New York, NY: Springer-Verlag. ISBN 978-1-4612-9529-7, 1995. [27] Yosida K. Functional analysis. Springer-Verlag, 1978.
|