跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 09:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳亭臻
研究生(外文):Ting-ChenChen
論文名稱:探討台灣南部的空氣污染物與噪音對生理反應之相關性
論文名稱(外文):Investigating Associations of Air Pollutants and Noise with Physiological Responses in Southern Taiwan
指導教授:吳致杰
指導教授(外文):Chih-Chieh Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:142
中文關鍵詞:空氣污染物移動式量測線性混合模型心率變異度肺功能
外文關鍵詞:Air pollutantsMobile measurementsLinear mixed modelHeart rate variabilityLung function
相關次數:
  • 被引用被引用:1
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
許多空氣污染物被發現與心肺疾病的發生息息相關,而心率變異度(HRV)與肺功能則被認為可作為預測心、肺疾病的生理反應指標之一,同時噪音亦會造成心率變異度的變化;在過去多以固定式測站監測資料做為數據來源,或僅探討個別污染物與單一生理反應指標,而本研究同時以移動式量測方法與固定測站,並增加過去文獻未曾考量之變數──低頻噪音與高頻噪音,以系統性地研究探討空氣污染物與噪音對心、肺疾病生理反應指標之相關性,同時考慮溫、溼度造成之影響。
本研究使用線性迴歸與線性混合效應模型兩種統計方法,並區分為單一污染物與兩污染物模型,對空氣污染物與生理反應之相關性進行分析;研究資料使用於台南地區,以移動式量測方法與固定測站所收集之空氣污染物暴露資料、氣象資料(溫、濕度)、噪音與生理反應數據,再用空氣污染物(PM2.5、PM1.0、BC、NO2、SO2、O3)與噪音暴露計算出不同時間段5-、15-、30-、60-和90-分鐘移動平均濃度值,以模型評估心率變異度指標(SDNN、RMMSD、pNN50、HF、LF、TP、LF/HF和心率)、肺功能指標(FVC、VC、FEV1、FEV1%)與空氣污染物、噪音之關係。
研究結果顯示空氣污染物在不同時空之影響有所不同,會受到時間變異與空間變異的影響。其次,以模式對空氣污染物與噪音變數對生理反應指標分析後,發現生理反應會受空氣污染物與噪音暴露改變而有所變化,可以觀察到PM2.5、PM1.0、O3濃度與溫度時對HRV之時域分析(SDNN、RMSSD、pNN50)指標有負相關性,且會因時間效應之拉長隨之增加其影響幅度;O3、溫度與HRV之頻域分析(LF、HF、TP)指標同樣有顯著負相關,當O3濃度、溫度越高時,HRV指標隨之會下降;同時PM2.5、PM1.0、溫度、O3對LF/HF、心率呈顯著正相關;噪音在90-分鐘時間段下,會與所有HRV指標呈負相關,並發現高頻噪音與全頻噪音兩者變化相似。再者,PM1.0、BC與肺功能之FEV1%在時間段較長時,呈統計上顯著負相關,但FVC、VC與FEV1則為顯著正相關。此外,分別以移動式量測方法和固定監測站之數據分析後,可見PM2.5與溫度在心率變異度與肺功能之FEV1指標上,其相關性結果呈現一致。
本研究與過去文獻皆說明短期暴露(90-分鐘內)於空氣污染物與噪音可能會影響心臟自主神經功能,尤其會致自律神經失衡與對副交感神經有負影響,主要在PM2.5與SDNN間特別明顯。在BC與FEV1%間可看到在60-分鐘即有顯著負影響,與過去文獻空氣污染物對肺功能指標要在超過8小時之長時間暴露才有顯著負影響不同。此外,亦發現全頻與高頻噪音兩者造成的變化具有較高之相似性,特別是在對HF與心率時尤為明顯;以及空氣污染物會在特定時間點對健康產生最大的不良效應,如PM2.5主要會在90-分鐘下影響最大。本研究優勢在於以移動式量測進行短時間暴露採樣,探討實時暴露之情形,並結合心率變異度與肺功能指標以達到更全面而系統性的了解空氣污染物與噪音暴露對人體健康反應之影響。但本研究主要針對台南市區進行之調查,是否能外推至其他區域則需要更進一步探討。
Air pollutants are found associated with cardiopulmonary diseases. Physiological responses are considered to be associated with air pollutants. This study uses the mobile measurement method, fixed monitoring stations, linear regression model, and linear mixed model (LMM) to systematically investigate the association among air pollutants, noise, and physiological responses, adjusted for temperature and relative humidity. The mobile measurement of air pollutants, noise, and physiological responses data were collected in southern Taiwan. The measurement of air pollutants and noise was based on the moving averages for 5-minute, 15-minute, 30-minute, 60-minute, and 90-minute. This study assesses the associations among a series of physiological responses and several air pollutants separately. The physiological responses include heart rate variability (HRV) and lung function indicators. The results show that the short-term (e.g. ≦ 90-minute) air pollutants and noise can affect cardiac autonomic function, causing the imbalance of autonomic nervous and the negative effects on parasympathetic nerves. In addition, noise and high frequency noise have very similar effects on physiological responses. Various air pollutants have different degrees of adverse effects on physiological responses over different exposure time.
摘要 I
Extended Abstract II
誌謝 V
目錄 VII
表目錄 X
圖目錄 XII
第1章 研究背景 1
1.1 研究動機 1
1.2 具體目標 2
1.3 研究目的 3
第2章 文獻回顧 4
2.1 空氣污染物 4
2.2 細懸浮微粒 5
2.3 噪音 6
2.4 氣態污染物 7
2.5 心率變異度與疾病 8
2.6 肺功能指標與疾病 9
2.7 空氣污染物與心、肺功能指標 11
2.7.1 空氣污染物與心率變異度 11
2.7.2 空氣污染物與肺功能指標 12
2.7.3 噪音與心率變異度 14
第3章 材料與方法 16
3.1 研究架構 16
3.2 研究對象與健康數據收集 18
3.2.1 心率變異度 19
3.2.2 肺功能指標 21
3.3 採樣規劃 21
3.3.1 研究地點 22
3.3.2 研究時間 23
3.3.3 採樣設備 24
3.3.4 採樣數據品質 28
3.3.5 環保署空氣品質測站資料 29
3.4 統計分析 30
3.4.1 研究變數 30
3.4.2 分析方法 32
第4章 結果與討論 35
4.1 移動式量測方法採樣結果 35
4.1.1 受試者 35
4.1.2 健康指標(outcome)之分布情形 38
4.1.3 暴露因子(exposure)之分布情形 41
4.2 暴露因子與健康指標之相關性分析 48
4.2.1 單一污染物 48
4.2.2 兩污染物 81
4.3 固定測站與移動式測量之比較 85
4.3.1 環境保護署空氣污染物數據情形 85
4.3.2 固定測站與移動式測量之相關式建立 88
4.3.3 固定測站與移動式測量之相關性 91
第5章 討論 95
5.1 暴露因子與各標準值、過去文獻之比較 95
5.2 暴露因子與健康指標之相關性 96
5.2.1 與心率變異度指標之相關性 96
5.2.2 與肺功能指標之相關性 98
5.3 暴露因子與疾病 109
5.4 研究優勢與限制 109
第6章 結論與未來展望 111
6.1 結論 111
6.2 未來展望 112
第7章 參考文獻 113
第8章 附錄 119
Aaron J. Cohen HRA, Bart Ostro, Kiran Dev Pandey, Michal, Krzyzanowski NK, Kersten Gutschmidt, Arden Pope, Isabelle, Romieu JMSKS. 2005. The global burden of disease due to outdoor air pollution. Journal of Toxicology and Environmental Health, Part A 68:1301-1307.
Adar SD, Gold DR, Coull BA, Schwartz J, Stone PH, Suh H. 2007. Focused exposures to airborne traffic particles and heart rate variability in the elderly. Epidemiology (Cambridge, Mass) 18.
Balmes JR, Fine JM, Sheppard D. 1987. Symptomatic bronchoconstriction after short-term inhalation of sulfur dioxide. American Review of Respiratory Disease 136:1117-1121.
Bigger JT, Fleiss JL, Rolnitzky LM, Steinman RC. 1993. Frequency domain measures of heart period variability to assess risk late after myocardial infarction. Journal of the American College of Cardiology 21:729-736.
Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, et al. 2004. Air pollution and cardiovascular disease: A statement for healthcare professionals from the expert panel on population and prevention science of the american heart association. Circulation 109.
Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, et al. 2010. Particulate matter air pollution and cardiovascular disease. Circulation 121:2331-2378.
Bukowiecki N, Dommen J, Prévôt ASH, Richter R, Weingartner E, Baltensperger U. 2002. A mobile pollutant measurement laboratory—measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution. Atmos Environ 36:5569-5579.
Chen W, Tang H, Zhao H. 2015. Diurnal, weekly and monthly spatial variations of air pollutants and air quality of beijing. Atmos Environ 119:21-34.
Chuang KJ, Chuang HC, Lin LY. 2013. Indoor air pollution, nighttime heart rate variability and coffee consumption among convenient store workers. PLoS One 8:e63320.
Cole-Hunter T, Weichenthal S, Kubesch N, Foraster M, Carrasco-Turigas G, Bouso L, et al. 2015. Impact of traffic-related air pollution on acute changes in cardiac autonomic modulation during rest and physical activity: A cross-over study. J Expo Sci Env Epid 26:133.
Collard HR, King TE, Bartelson BB, Vourlekis JS, Schwarz MI, Brown KK. 2003. Changes in clinical and physiologic variables predict survival in idiopathic pulmonary fibrosis. Am J Resp Crit Care 168:538-542.
Delfino RJ, Tjoa T, Gillen DL, Staimer N, Polidori A, Arhami M, et al. 2010. Traffic-related air pollution and blood pressure in elderly subjects with coronary artery disease. Epidemiology (Cambridge, Mass) 21:10.1097/EDE.1090b1013e3181d1095e1019b.
El Aarbaoui T, Méline J, Brondeel R, Chaix B. 2017. Short-term association between personal exposure to noise and heart rate variability: The record multisensor study. Environmental Pollution 231:703-711.
Garza JL, Mittleman MA, Zhang J, Christiani DC, Cavallari JM. 2016. Time course of heart rate variability response to pm2.5 exposure from secondhand smoke. PLoS One 11:e0154783.
Gauderman WJ, Urman R, Avol E, Berhane K, McConnell R, Rappaport E, et al. 2015. Association of improved air quality with lung development in children. New England Journal of Medicine 372:905-913.
Gehring U, Gruzieva O, Agius RM, Beelen R, Custovic A, Cyrys J, et al. 2013. Air pollution exposure and lung function in children: The escape project. Environmental health perspectives 121:1357-1364.
GOLD. 2017. Pocket guide to copd diagnosis, management, and prevention – 2017. The Global Initiative for Chronic Obstructive Lung Disease (GOLD)
Gotschi T, Heinrich J, Sunyer J, Kunzli N. 2008. Long-term effects of ambient air pollution on lung function: A review. Epidemiology (Cambridge, Mass) 19:690-701.
Hagler GSW, Yelverton TLB, Vedantham R, Hansen ADA, Turner JR. 2011. Post-processing method to reduce noise while preserving high time resolution in aethalometer real-time black carbon data. Aerosol Air Qual Res 11:539-546.
Hampel R, Ruckerl R, Yli-Tuomi T, Breitner S, Lanki T, Kraus U, et al. 2014. Impact of personally measured pollutants on cardiac function. International journal of hygiene and environmental health 217:460-464.
Hashemzadeh B, Idani E, Goudarzi G, Ankali KA, Sakhvidi MJZ, Akbar Babaei A, et al. 2016. Effects of pm2.5 and no2 on the 8-isoprostane and lung function indices of fvc and fev1 in students of ahvaz city, iran. Saudi Journal of Biological Sciences.
He F, Shaffer ML, Li X, Rodriguez-Colon S, Wolbrette DL, Williams R, et al. 2011. Individual-level pm(2).(5) exposure and the time course of impaired heart rate variability: The apacr study. J Expo Sci Environ Epidemiol 21:65-73.
Huang J, Deng F, Wu S, Lu H, Hao Y, Guo X. 2013. The impacts of short-term exposure to noise and traffic-related air pollution on heart rate variability in young healthy adults. J Expo Sci Env Epid 23:559.
Hussein T, Hämeri K, Aalto PP, Paatero P, Kulmala M. 2005. Modal structure and spatial–temporal variations of urban and suburban aerosols in helsinki—finland. Atmos Environ 39:1655-1668.
Jeon Y-M, Lee M-Y. 2016. Airborne nanoparticles (pm0.1) induce autophagic cell death of human neuronal cells. Journal of Applied Toxicology 36:1332-1342.
Jia X, Yang X, Hu D, Dong W, Yang F, Liu Q, et al. 2018. Short-term effects of particulate matter in metro cabin on heart rate variability in young healthy adults: Impacts of particle size and source. Environmental research 167:292-298.
Jung CR, Lin YT, Hwang BF. 2015. Ozone, particulate matter, and newly diagnosed alzheimer's disease: A population-based cohort study in taiwan. Journal of Alzheimer's disease : JAD 44:573-584.
Kampa M, Castanas E. 2008. Human health effects of air pollution. Environmental Pollution 151:362-367.
Kimura M, Taniguchi H, Kondoh Y, Kimura T, Kataoka K, Nishiyama O, et al. 2013. Pulmonary hypertension as a prognostic indicator at the initial evaluation in idiopathic pulmonary fibrosis. Respiration; international review of thoracic diseases 85:456-463.
Kleiger RE, Miller JP, Bigger JT, Moss AJ. 1987. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. The American Journal of Cardiology 59:256-262.
Kleiger RE, Stein PK, Bigger JT. 2005. Heart rate variability: Measurement and clinical utility. Annals of Noninvasive Electrocardiology 10:88-101.
Kramm G, Müller H, Fowler D, Höfken KD, Meixner FX, Schaller E. 1991. A modified profile method for determining the vertical fluxes of no, no2, ozone, and hno3 in the atmospheric surface layer. Journal of Atmospheric Chemistry 13:265-288.
Kraus U, Schneider A, Breitner S, Hampel R, Ruckerl R, Pitz M, et al. 2013. Individual daytime noise exposure during routine activities and heart rate variability in adults: A repeated measures study. Environmental health perspectives 121:607-612.
Lee G-S, Chen M-L, Wang G-Y. 2010. Evoked response of heart rate variability using short-duration white noise. Autonomic Neuroscience 155:94-97.
Matt F, Cole-Hunter T, Donaire-Gonzalez D, Kubesch N, Martínez D, Carrasco-Turigas G, et al. 2016. Acute respiratory response to traffic-related air pollution during physical activity performance. Environment International 97:45-55.
McConnell R, Islam T, Shankardass K, Jerrett M, Lurmann F, Gilliland F, et al. 2010. Childhood incident asthma and traffic-related air pollution at home and school. Environmental health perspectives.
Neghab M, Maddahi M, Rajaeefard AR. 2009. Hearing impairment and hypertension associated with long term occupational exposure to noise. Iranian Red Crescent Medical Journal 11:160-165.
Oftedal B, Brunekreef B, Nystad W, Madsen C, Walker SE, Nafstad P. 2008. Residential outdoor air pollution and lung function in schoolchildren. Epidemiology (Cambridge, Mass) 19:129-137.
Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. 2005. Interpretative strategies for lung function tests. European Respiratory Journal 26:948.
Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132-1141.
Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et al. 2013. Air pollution and lung cancer incidence in 17 european cohorts: Prospective analyses from the european study of cohorts for air pollution effects (escape). The Lancet Oncology 14:813-822.
Reed MJ, Robertson CE, Addison PS. 2005. Heart rate variability measurements and the prediction of ventricular arrhythmias. QJM: An International Journal of Medicine 98:87-95.
Rice MB, Ljungman PL, Wilker EH, Gold DR, Schwartz JD, Koutrakis P, et al. 2013. Short-term exposure to air pollution and lung function in the framingham heart study. Am J Resp Crit Care 188:1351-1357.
Riediker M, Cascio WE, Griggs TR, Herbst MC, Bromberg PA, Neas L, et al. 2004. Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men. Am J Respir Crit Care Med 169:934-940.
Schwartz J, Litonjua A, Suh H, Verrier M, Zanobetti A, Syring M, et al. 2005. Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax 60.
Shields KN, Cavallari JM, Hunt MJO, Lazo M, Molina M, Molina L, et al. 2013. Traffic-related air pollution exposures and changes in heart rate variability in mexico city: A panel study. Environmental Health 12:7.
Sim CS, Sung JH, Cheon SH, Lee JM, Lee JW, Lee J. 2015. The effects of different noise types on heart rate variability in men. Yonsei Medical Journal 56:235-243.
Stein PK, Bosner MS, Kleiger RE, Conger BM. 1994. Heart rate variability: A measure of cardiac autonomic tone. American Heart Journal 127:1376-1381.
Stutz J, Alicke B, Ackermann R, Geyer A, White A, Williams E. 2004. Vertical profiles of no3, n2o5, o3, and nox in the nocturnal boundary layer: 1. Observations during the texas air quality study 2000. Journal of Geophysical Research: Atmospheres 109.
Sunyer J, Atkinson R, Ballester F, Le Tertre A, Ayres JG, Forastiere F, et al. 2003. Respiratory effects of sulphur dioxide: A hierarchical multicity analysis in the aphea 2 study. Occupational and environmental medicine 60:e2.
Suppan P, Schädler G. 2004. The impact of highway emissions on ozone and nitrogen oxide levels during specific meteorological conditions. Science of The Total Environment 334-335:215-222.
Task-Force TfotESoCtNASoPE. 1996. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task force of the european society of cardiology and the north american society of pacing and electrophysiology. Circulation 93:1043-1065.
The WHO European Centre for Environment and Health BO, WHO Regional Office for Europe. 2011. Burden of disease from environmental noise.
Tunnicliffe WS, Hilton MF, Harrison RM, Ayres JG. 2001. The effect of sulphur dioxide exposure on indices of heart rate variability in normal and asthmatic adults. European Respiratory Journal 17:604-608.
Urman R, McConnell R, Islam T, Avol EL, Lurmann FW, Vora H, et al. 2014. Associations of children’s lung function with ambient air pollution: Joint effects of regional and near-roadway pollutants. Thorax 69:540-547.
Walker ED, Brammer A, Cherniack MG, Laden F, Cavallari JM. 2016. Cardiovascular and stress responses to short-term noise exposures—a panel study in healthy males. Environmental research 150:391-397.
Weichenthal S, Hatzopoulou M, Goldberg MS. 2014. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: A cross-over study. Particle and Fibre Toxicology 11:70.
World Health Organization. 2005. Air quality guidelines - global update 2005. WHO Regional Office for Europe.
World Health Organization. 2016. Ambient air pollution: A global assessment of exposure and burden of disease:World Health Organization.
Wu S, Deng F, Niu J, Huang Q, Liu Y, Guo X. 2010. Association of heart rate variability in taxi drivers with marked changes in particulate air pollution in beijing in 2008. Environmental health perspectives 118:87-91.
Wu S, Deng F Fau - Niu J, Niu J Fau - Huang Q, Huang Q Fau - Liu Y, Liu Y Fau - Guo X, Guo X. 2011a. The relationship between traffic-related air pollutants and cardiac autonomic function in a panel of healthy adults: A further analysis with existing data.
Wu S, Deng F, Niu J, Huang Q, Liu Y, Guo X. 2011b. Exposures to pm(2).(5) components and heart rate variability in taxi drivers around the beijing 2008 olympic games. Sci Total Environ 409:2478-2485.
Wulsin LR, Horn PS, Perry JL, Massaro JM, D'Agostino RB. 2015. Autonomic imbalance as a predictor of metabolic risks, cardiovascular disease, diabetes, and mortality. The Journal of Clinical Endocrinology & Metabolism 100:2443-2448.
Xie Y, Zhao B, Zhang L, Luo R. 2015. Spatiotemporal variations of pm2.5 and pm10 concentrations between 31 chinese cities and their relationships with so2, no2, co and o3. Particuology 20:141-149.
Xu D, Zhang Y, Zhou L, Li T. 2018. Acute effects of pm2.5 on lung function parameters in schoolchildren in nanjing, china: A panel study.
Xu T, Hou J, Cheng J, Zhang R, Yin W, Huang C, et al. 2018. Estimated individual inhaled dose of fine particles and indicators of lung function: A pilot study among chinese young adults. Environmental Pollution 235:505-513.
Zanobetti A, Gold DR, Stone PH, Suh HH, Schwartz J, Coull BA, et al. 2010. Reduction in heart rate variability with traffic and air pollution in patients with coronary artery disease. Environmental health perspectives 118.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top