跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊馥瑄
研究生(外文):Fu-ShiuanYang
論文名稱:Msx2在傷口誘導毛囊新生模式中促進細胞重新編碼進而提生組織再生潛能
論文名稱(外文):Msx2 supports cellular reprogramming during wound-induced hair follicle neogenesis to promote tissue competency
指導教授:修臥龍
指導教授(外文):Michael W. Hughes
學位類別:碩士
校院名稱:國立成功大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:50
中文關鍵詞:細胞再程序化組織再生表觀遺傳學Msx2傷口癒合
外文關鍵詞:Cellular reprogrammingtissue regenerationepigeneticsMsx2wound healing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當成年的哺乳類動物出現傷口,通常會形成疤痕並且癒合。由過量膠原蛋白,纖維蛋白組成的疤痕雖然可以癒合傷口,卻會阻礙組織當中細胞的訊息傳遞與再生能力,並且失去正常皮膚組織具備的功能。這項研究的目的是為了瞭解在傷口癒合的期間,受到Msx2組成不同蛋白複合體來進行調控,並且在傷口中央(再生毛囊)與傷口邊緣(形成疤痕)有所不同的組織再生能力。先前的研究顯示在面積較大的傷口中間會有毛髮的再生,這個現象也被稱作「傷口誘導毛囊再生」(Wound-Induced Hair follicle Neogenesis, WIHN)。有趣的是,先前研究發現Msx2基因, muscle segment homeobox 2以及它的蛋白質(轉錄因子)Msx2在小鼠的傷口誘導毛囊再生(WIHN)模式中也扮演重要的角色:在一個移除上皮層及真皮層的傷口中,Msx2在癒合早期表現在傷口周圍,然而在後期Msx2表現在傷口中央,也就是毛囊再生的地方。Msx2在時間與空間上的表現差異可以對應到傷口誘導毛囊再生的過程,這樣的現象引發我們進一步去研究Msx2在傷口誘導毛囊再生中促進細胞重新編碼的調控機制,以及Msx2是否可以調控細胞的狀態,又或者是否受到表觀遺傳學的影響而進行細胞再程序化進而提升組織再生潛能。我們假設Msx2會引導不同訊號傳遞路徑之蛋白質或表觀遺傳學的效應物形成複合體,並且在傷口周圍及傷口中央藉由調控不同細胞狀態而調控組織再生的能力與效果。
我們發現在傷口周圍及中央有兩種不同調控情形。在傷口周圍,訊號路徑上的效應物,例如:β-catenin, LEF1和SHH,及表觀遺傳學調控因子,例如:HDAC1, HDAC2和EZH2,有較高的表現。這些調控因子會和Msx2交互作用而構成不同的蛋白質複合體進而抑制組織再生。再者,由於表觀遺傳的抑制作用,Msx2啟動子上的LEF/TCF 及Smad結合位都是關閉的,使得轉錄作用在傷口周圍較難以進行。另一方面,在傷口中央有另一套調控機制,除了拓撲異構酶topoisomerase II-β (TOPIIβ),訊號路徑效應物及表觀遺傳學調控因子大多有較低的表現量。拓撲異構酶II-β (TOPIIβ)可以藉由解開雙股螺旋的構造進而改變染色質纏繞的情形,並且促進基因表現。在傷口中央,大多數的抑制蛋白和拓撲異構酶topoisomerase II-β (TOPIIβ)會脫離Msx2來停止抑制作用及開始細胞再程序化進而誘導組織再生。另外,Msx2啟動子上的LEF/TCF結合位受到TOPIIβ的調控以及表觀遺傳在組蛋白H3K9和H3K27上的修飾而展開,所以利於Msx2基因表現。而我們也發現LEF1的確會與Msx2啟動子上的LEF/TCF結合位結合,而β-catenin也表現在傷口中央的細胞核中,這表示WNT訊號路徑調控Msx2的表現並促進傷口誘導毛髮再生的現象。總而言之,我們發現了Msx2引導之兩種結合訊號傳遞路徑與表觀遺傳學的不同調控機制,在傷口中央進行細胞再程序化並促進組織再生。藉由以上知識,我們可以更加了解如何藉由內源性調控來促進正常組織的再生進而幫助有嚴重傷口的病患。
In adult mammals, wounds usually heal by forming scars. Scar consists of excessive disorganized collagen, fibroblasts and myofibroblasts. This disorganized structure can block off cell communication preventing regeneration. Additionally, this process loses the functions of normal healthy tissue. The purpose of this study is to understand the different ability to regenerate at wound margin (non-regenerative) versus wound center (regenerative) which might be regulated by different complexes guided by Msx2 during wound healing. Previous studies showed there is hair neogenesis in a large wounds in mammals which is known as “Wound Induced Hair follicle Neogenesis” (WIHN) (Chuong 2007, Ito, Yang et al. 2007). Interestingly, Msx2, muscle segment homeobox 2, has been proved to play a role during skin regeneration in axolotl and mice. In mice, Msx2 is expressed at the wound margin at an early stage, while it is expressed at the wound center at a late stage co-localizing where hair neogenesis occurred during full-thickness wound healing. The spatio-temporal expression change of Msx2 piqued our curiosity as to the functional role of Msx2 and if the different cell states between wound margin and center are regulated by Msx2. The underlying mechanism may also involve epigenetic modulation to cellular reprogram. We hypothesize Msx2 directs differential protein complexes, including pathways effectors and epigenetic regulators, to modulate regeneration via different cell states at the wound margin/non-regenerative versus the wound center/regenerative.
Our data suggested two regulatory profiles at the wound margin and the wound center. At the wound margin, signaling effectors like β-catenin, LEF1, SHH and epigenetic regulators like, HDAC1, HDAC2 and EZH2 show higher expressions. These regulators interact with Msx2 to build up different protein complexes to inhibit the tissue regeneration. Moreover, the Msx2 promoter is close at both LEF/TCF and Smad binding elements due to the epigenetic repression of histone modifications. On the contrary, at the wound center, signaling effectors and epigenetic regulators show lower expressions except for TOP2b which is response for remodeling the chromatin packaging and allow genes to express. Most of the repressor proteins and TOP2b release from Msx2 to stop the inhibition and start cellular reprogramming at the wound center. In addition, the Msx2 promoter is open at the LEF/TCF binding element with the aids of acetylation on H3K9 and H3K27 and TOP2b. LEF1 bind to the LEF/TCF binding element on Msx2 promoter which suggests that WNT pathway regulates the expression of Msx2 and promote hair follicle neogenesis during wound healing at the wound center. Taken together, Msx2 guides two regulatory profiles of genetic and epigenetic regulations at the wound margin and the wound center to carry out different ability to regenerate.
ABSTRACT I
中文摘要 III
致謝 V
CONTENT VI
ABBREVIATIONS VII
INTRODUCTION 1
Skin biology 1
Hair follicle morphogenesis and Hair cycle 2
Stem cell and tissue competency (repair/adult vs regeneration/fetal) 3
Wound Induced Hair follicle Neogenesis (WIHN) 5
The expression of Msx2 during WIHN 5
Cellular reprogramming of hair follicle neogenesis 6
Epigenetic and endogenous reprogramming 7
Significance 10
Hypothesis 10
Specific aims 10
METERIALS AND METHODS 11
Mice 11
Wound induced hair follicle neogenesis (WIHN) assay 11
Whole mount tissue staining 11
Immunohistochemistry (IHC) staining 12
Mouse skin tissue protein extraction 12
Western blot 13
Co-immunoprecipitation (co-IP) assay 13
Mouse skin tissue protein-DNA complex extraction 14
Chromatin immunoprecipitation (ChIP) assay 14
RESULTS 15
Aim1: To characterize the differential expression pattern of genetic and epigenetic markers associated with wound regeneration at late stage during WIHN at wound center. 15
Epigenetic enzymes and modification markers expressed at wounded center versus margin during the wound healing process. 15
Epigenetic modification markers showed different distribution patterns at wound margin versus wound center during healing process. 15
Genetic regulators showed different expression levels at wound margin (non-regenerative) versus wound center (regenerative) during healing process. 16
Epigenetic enzymes showed different expression levels at wound margin (non-regenerative) versus wound center (regenerative) during the healing process. 17
Aim2: To identify protein complexes associated with Msx2 of regeneration at the wound center and repair at the wound margin. 24
Msx2 associates with multiple genetic and epigenetic regulators during WIHN. 24
Aim3: To identify the upstream signals regulating Msx2 at wound margin versus wound center during WIHN. 28
Msx2 promoter is bound by LEF1 at the wound center during WIHN. 28
CONCLUSION 31
DISCUSSION 33
SUPPLEMENTARY 41
REFERENCE 45
1.Adam, R. C., H. Yang, Y. Ge, W.-H. Lien, P. Wang, Y. Zhao, L. Polak, J. Levorse, S. C. Baksh, D. Zheng and E. Fuchs (2018). Temporal Layering of Signaling Effectors Drives Chromatin Remodeling during Hair Follicle Stem Cell Lineage Progression. Cell Stem Cell 22(3): 398-413.e397.
2.Alonso, L. and E. Fuchs (2006). The hair cycle. J Cell Sci 119(Pt 3): 391-393.
3.Alster, T. S. and E. L. Tanzi (2003). Hypertrophic Scars and Keloids. American Journal of Clinical Dermatology 4(4): 235-243.
4.Austin, C. A., K. C. Lee, R. L. Swan, M. M. Khazeem, C. M. Manville, P. Cridland, A. Treumann, A. Porter, N. J. Morris and I. G. Cowell (2018). TOP2B: The First Thirty Years. International journal of molecular sciences 19(9): 2765.
5.Bürglin, T. R. and M. Affolter (2016). Homeodomain proteins: an update. Chromosoma 125(3): 497-521.
6.Blanpain, C. and E. Fuchs (2009). Epidermal homeostasis: a balancing act of stem cells in the skin. Nature Reviews Molecular Cell Biology 10: 207.
7.Brockes, J. P. and A. Kumar (2008). Comparative Aspects of Animal Regeneration. Annual Review of Cell and Developmental Biology 24(1): 525-549.
8.Brunmeir, R., S. Lagger and C. Seiser (2009). Histone deacetylase HDAC1/HDAC2-controlled embryonic development and cell differentiation. Int J Dev Biol 53(2-3): 275-289.
9.Cao, R., L. Wang, H. Wang, L. Xia, H. Erdjument-Bromage, P. Tempst, R. S. Jones and Y. Zhang (2002). Role of Histone H3 Lysine 27 Methylation in Polycomb-Group Silencing. Science 298(5595): 1039-1043.
10.Cardenas, M. E. and S. M. Gasser (1993). Regulation of topoisomerase II by phosphorylation: a role for casein kinase II. Journal of Cell Science 104(2): 219-225.
11.Chuong, C.-M. (2007). New hair from healing wounds. Nature 447: 265.
12.Chuong, C.-M. and A. Noveen (1999). Phenotypic Determination of Epithelial Appendages: Genes, Developmental Pathways, and Evolution. Journal of Investigative Dermatology Symposium Proceedings 4(3): 307-311.
13.Conboy, I. M. and T. A. Rando (2005). Aging, Stem Cells and Tissue Regeneration: Lessons from Muscle. Cell Cycle 4(3): 407-410.
14.Dupont, C., D. R. Armant and C. A. Brenner (2009). Epigenetics: Definition, Mechanisms and Clinical Perspective. Semin Reprod Med 27(05): 351-357.
15.Ericsson, C. and M. Nistér (2011). Protein extraction from solid tissue. Methods in biobanking, Springer: 307-312.
16.Ezhkova, E., W. H. Lien, N. Stokes, H. A. Pasolli, J. M. Silva and E. Fuchs (2011). EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev 25(5): 485-498.
17.Ezhkova, E., H. A. Pasolli, J. S. Parker, N. Stokes, I. h. Su, G. Hannon, A. Tarakhovsky and E. Fuchs (2009). Ezh2 Orchestrates Gene Expression for the Stepwise Differentiation of Tissue-Specific Stem Cells. Cell 136(6): 1122-1135.
18.Gehring, W. J., M. Affolter and T. Bürglin (1994). HOMEODOMAIN PROTEINS. Annual Review of Biochemistry 63(1): 487-526.
19.Gonzales, K. A. U. and E. Fuchs (2017). Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Developmental Cell 43(4): 387-401.
20.Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature 389(6649): 349-352.
21.Haberland, M., R. L. Montgomery and E. N. Olson (2009). The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nature Reviews Genetics 10: 32.
22.Hsu, Y. C., H. A. Pasolli and E. Fuchs (2011). Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144(1): 92-105.
23.Hughes, M. W., T.-X. Jiang, S.-J. Lin, Y. Leung, K. Kobielak, R. B. Widelitz and C. M. Chuong (2014). Disrupted Ectodermal Organ Morphogenesis in Mice with a Conditional Histone Deacetylase 1, 2 Deletion in the Epidermis. Journal of Investigative Dermatology 134(1): 24-32.
24.Hughes, M. W., T.-X. Jiang, M. V. Plikus, C. F. Guerrero-Juarez, C.-H. Lin, C. Schafer, R. Maxson, R. B. Widelitz and C.-M. Chuong (2018). Msx2 Supports Epidermal Competency during Wound-Induced Hair Follicle Neogenesis. Journal of Investigative Dermatology 138(9): 2041-2050.
25.Hughes, M. W., T. X. Jiang, M. V. Plikus, C. F. Guerrero-Juarez, C. H. Lin, C. Schafer, R. Maxson, R. B. Widelitz and C. M. Chuong (2018). Msx2 Supports Epidermal Competency during Wound-Induced Hair Follicle Neogenesis. J Invest Dermatol 138(9): 2041-2050.
26.Hussein, S. M., E. K. Duff and C. Sirard (2003). Smad4 and β-catenin co-activators functionally interact with lymphoid-enhancing factor to regulate graded expression of Msx2. Journal of Biological Chemistry 278(49): 48805-48814.
27.Ito, M., Z. Yang, T. Andl, C. Cui, N. Kim, S. E. Millar and G. Cotsarelis (2007). Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447: 316.
28.Jabs, E. W., U. Müller, X. Li, L. Ma, W. Luo, I. S. Haworth, I. Klisak, R. Sparkes, M. L. Warman, J. B. Mulliken, M. L. Snead and R. Maxson (1993). A mutation in the homeodomain of the human (em)MSX2(/em) gene in a family affected with autosomal dominant craniosynostosis. Cell 75(3): 443-450.
29.Jiang, T.-X., C.-C. Chen, M. W. Hughes, C.-M. Chuong and R. Widelitz (2015). Epigenetic and Environmental Regulation of Skin Appendage Regeneration. Stem Cells, Tissue Engineering and Regenerative Medicine: 163-184.
30.Jiang, T. (1998). Current methods in the study of avian skin appendages. Molecular basis of epithelial appendage morphogenesis: 395-408.
31.Johnson, C. A., K. Padget, C. A. Austin and B. M. Turner (2001). Deacetylase Activity Associates with Topoisomerase II and Is Necessary for Etoposide-induced Apoptosis. Journal of Biological Chemistry 276(7): 4539-4542.
32.Ju, B.-G., V. V. Lunyak, V. Perissi, I. Garcia-Bassets, D. W. Rose, C. K. Glass and M. G. Rosenfeld (2006). A Topoisomerase IIß-Mediated dsDNA Break Required for Regulated Transcription. Science 312(5781): 1798-1802.
33.Kobielak, K., H. A. Pasolli, L. Alonso, L. Polak and E. Fuchs (2003). Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. The Journal of Cell Biology 163(3): 609-623.
34.Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128(4): 693-705.
35.Lavker, R. M., T.-T. Sun, H. Oshima, Y. Barrandon, M. Akiyama, C. Ferraris, G. Chevalier, B. Favier, C. A. B. Jahoda, D. Dhouailly, A. A. Panteleyev and A. M. Christiano (2003). Hair Follicle Stem Cells. Journal of Investigative Dermatology Symposium Proceedings 8(1): 28-38.
36.Lee, S. H., S. K. Jeong and S. K. Ahn (2006). An update of the defensive barrier function of skin. Yonsei Med J 47(3): 293-306.
37.Liu, Y.-H., L. Ma, L.-Y. Wu, W. Luo, R. Kundu, F. Sangiorgi, M. L. Snead and R. Maxson (1994). Regulation of the Msx2 homeobox gene during mouse embryogenesis: A transgene with 439 bp of 5′ flanking sequence is expressed exclusively in the apical ectodermal ridge of the developing limb. Mechanisms of Development 48(3): 187-197.
38.Lu, L.-Y., H. Kuang, G. Korakavi and X. Yu (2015). Topoisomerase II Regulates the Maintenance of DNA Methylation. Journal of Biological Chemistry 290(2): 851-860.
39.Ma, L., J. Liu, T. Wu, M. Plikus, T. X. Jiang, Q. Bi, Y. H. Liu, S. Muller-Rover, H. Peters, J. P. Sundberg, R. Maxson, R. L. Maas and C. M. Chuong (2003). 'Cyclic alopecia' in Msx2 mutants: defects in hair cycling and hair shaft differentiation. Development 130(2): 379-389.
40.MacDonald, B. T., K. Tamai and X. He (2009). Wnt/β-catenin signaling: components, mechanisms, and diseases. Developmental cell 17(1): 9-26.
41.Maricich, S. M., S. A. Wellnitz, A. M. Nelson, D. R. Lesniak, G. J. Gerling, E. A. Lumpkin and H. Y. Zoghbi (2009). Merkel cells are essential for light-touch responses. Science 324(5934): 1580-1582.
42.Martínez García, P. M., M. García Torres, F. Divina, F. A. Gómez Vela and F. Cortés-Ledesma (2018). Analysis of Relevance and Redundance on Topoisomerase 2b (TOP2B) Binding Sites: A Feature Selection Approach, Cham, Springer International Publishing.
43.Millar, S. E. (2002). Molecular Mechanisms Regulating Hair Follicle Development. Journal of Investigative Dermatology 118(2): 216-225.
44.Nelson, A. M., D. E. Loy, J. A. Lawson, A. S. Katseff, G. A. Fitzgerald and L. A. Garza (2013). Prostaglandin D2 inhibits wound-induced hair follicle neogenesis through the receptor, Gpr44. The Journal of investigative dermatology 133(4): 881-889.
45.Nitiss, J. L. (2009). DNA topoisomerase II and its growing repertoire of biological functions. Nature Reviews Cancer 9: 327.
46.Ogi, H., K. Suzuki, Y. Ogino, M. Kamimura, M. Miyado, X. Ying, Z. Zhang, M. Shinohara, Y. Chen and G. Yamada (2005). Ventral abdominal wall dysmorphogenesis of Msx1/Msx2 double-mutant mice. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology 284A(1): 424-430.
47.Ojeh, N., I. Pastar, M. Tomic-Canic and O. Stojadinovic (2015). Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications. International Journal of Molecular Sciences 16(10): 25476-25501.
48.Oshima, H., A. Rochat, C. Kedzia, K. Kobayashi and Y. Barrandon (2001). Morphogenesis and Renewal of Hair Follicles from Adult Multipotent Stem Cells. Cell 104(2): 233-245.
49.Plikus, M. V., C. F. Guerrero-Juarez, M. Ito, Y. R. Li, P. H. Dedhia, Y. Zheng, M. Shao, D. L. Gay, R. Ramos, T.-C. Hsi, J. W. Oh, X. Wang, A. Ramirez, S. E. Konopelski, A. Elzein, A. Wang, R. J. Supapannachart, H.-L. Lee, C. H. Lim, A. Nace, A. Guo, E. Treffeisen, T. Andl, R. N. Ramirez, R. Murad, S. Offermanns, D. Metzger, P. Chambon, A. D. Widgerow, T.-L. Tuan, A. Mortazavi, R. K. Gupta, B. A. Hamilton, S. E. Millar, P. Seale, W. S. Pear, M. A. Lazar and G. Cotsarelis (2017). Regeneration of fat cells from myofibroblasts during wound healing. Science 355(6326): 748-752.
50.Potten, C. S. (1974). THE EPIDERMAL PROLIFERATIVE UNIT: THE POSSIBLE ROLE OF THE CENTRAL BASAL CELL. Cell Proliferation 7(1): 77-88.
51.POTTEN, C. S. and R. J. MORRIS (1988). Epithelial stem cells
52.in vivo. Journal of Cell Science 1988(Supplement 10): 45-62.
53.Reik, W., W. Dean and J. Walter (2001). Epigenetic Reprogramming in Mammalian Development. Science 293(5532): 1089-1093.
54.Santos-Rosa, H., R. Schneider, A. J. Bannister, J. Sherriff, B. E. Bernstein, N. C. T. Emre, S. L. Schreiber, J. Mellor and T. Kouzarides (2002). Active genes are tri-methylated at K4 of histone H3. Nature 419(6905): 407-411.
55.Satokata, I., L. Ma, H. Ohshima, M. Bei, I. Woo, K. Nishizawa, T. Maeda, Y. Takano, M. Uchiyama, S. Heaney, H. Peters, Z. Tang, R. Maxson and R. Maas (2000). Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nature Genetics 24(4): 391-395.
56.Tanaka, Elly M. and Peter W. Reddien (2011). The Cellular Basis for Animal Regeneration. Developmental Cell 21(1): 172-185.
57.Tie, F., R. Banerjee, C. A. Stratton, J. Prasad-Sinha, V. Stepanik, A. Zlobin, M. O. Diaz, P. C. Scacheri and P. J. Harte (2009). CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development (Cambridge, England) 136(18): 3131-3141.
58.Tong, J. K., C. A. Hassig, G. R. Schnitzler, R. E. Kingston and S. L. Schreiber (1998). Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395(6705): 917-921.
59.Tsai, S.-C., N. Valkov, W.-M. Yang, J. Gump, D. Sullivan and E. Seto (2000). Histone deacetylase interacts directly with DNA topoisomerase II. Nature Genetics 26(3): 349-353.
60.Tuan, T.-L. and L. S. Nichter (1998). The molecular basis of keloid and hypertrophic scar formation. Molecular Medicine Today 4(1): 19-24.
61.Tumbar, T., G. Guasch, V. Greco, C. Blanpain, W. E. Lowry, M. Rendl and E. Fuchs (2004). Defining the Epithelial Stem Cell Niche in Skin. Science 303(5656): 359-363.
62.Wei, S., C. Li, Z. Yin, J. Wen, H. Meng, L. Xue and J. Wang (2018). Histone methylation in DNA repair and clinical practice: new findings during the past 5-years. Journal of Cancer 9(12): 2072-2081.
63.Weinhold, B. (2006). Epigenetics: The Science of Change. Environmental Health Perspectives 114(3): A160-A167.
64.Wysocka, J., T. Swigut, T. A. Milne, Y. Dou, X. Zhang, A. L. Burlingame, R. G. Roeder, A. H. Brivanlou and C. D. Allis (2005). WDR5 Associates with Histone H3 Methylated at K4 and Is Essential for H3 K4 Methylation and Vertebrate Development. Cell 121(6): 859-872.
65.Xie, J., B. Yao, Y. Han, S. Huang and X. Fu (2016). Skin appendage-derived stem cells: cell biology and potential for wound repair. Burns Trauma 4: 38.
66.Yamamoto, K., Y. Taketomi, Y. Isogai, Y. Miki, H. Sato, S. Masuda, Y. Nishito, K. Morioka, Y. Ishimoto, N. Suzuki, Y. Yokota, K. Hanasaki, Y. Ishikawa, T. Ishii, T. Kobayashi, K. Fukami, K. Ikeda, H. Nakanishi, R. Taguchi and M. Murakami (2011). Hair follicular expression and function of group X secreted phospholipase A2 in mouse skin. The Journal of biological chemistry 286(13): 11616-11631.
67.Yang, H., R. C. Adam, Y. Ge, Z. L. Hua and E. Fuchs (2017). Epithelial-Mesenchymal Micro-niches Govern Stem Cell Lineage Choices. Cell 169(3): 483-496.e413.
68.Yeh, J., L. M. Green, T.-X. Jiang, M. Plikus, E. Huang, R. N. Chang, M. W. Hughes, C.-M. Chuong and T.-L. Tuan (2009). Accelerated closure of skin wounds in mice deficient in the homeobox gene Msx2. Wound Repair and Regeneration 17(5): 639-648.
69.Yoshizawa, T., F. Takizawa, F. Iizawa, O. Ishibashi, H. Kawashima, A. Matsuda, N. Endo and H. Kawashima (2004). Homeobox Protein Msx2 Acts as a Molecular Defense Mechanism for Preventing Ossification in Ligament Fibroblasts. Molecular and Cellular Biology 24(8): 3460-3472.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top