跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/13 00:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡忠恩
研究生(外文):Zhong-EnCai
論文名稱:幾何環形模態雷射的混沌與極端事件
論文名稱(外文):Chaos and extreme events in a geometric-ring-mode laser
指導教授:魏明達
指導教授(外文):Ming-Dar Wei
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:53
中文關鍵詞:幾何環形模態模態競爭混沌現象極端事件
外文關鍵詞:geometric-ring-modechaosextreme eventsnoise  
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗架設四面鏡系統之共振腔來產生幾何環形模態,由於在腔內會有順時針 (clockwise)與逆時針 (counterclockwise)兩種路徑,因此雷射光形呈現兩個分開的點,並藉由輸出耦合鏡的位置改變,來使兩個模態的發散角改變,來觀察其光形、功率及發散角的變化;並量測各位置之鬆弛震盪頻率,來觀察系統從高斯模態至幾何環形模態之鬆弛震盪頻率變化,及此系統下共振腔條件與鬆弛震盪頻率之關係。
  泵源經訊號產生器調制,當調制頻率接近鬆弛震盪頻率時會與泵源產生共振,此時將調制深度逐漸加深至臨界值,可以觀察到訊號沿倍週期路徑進入混沌現象,此時有可能會產生極端事件;由功率量測以及訊號觀察,幾何環形模態的兩點會競爭泵源之能量,因此我們將會討論幾何環形模態的兩點模態競爭程度,與極端事件的產生機率之相關性。
We generated the geometric-ring-mode by a four-element Nd:YVO4 laser. There were two modes corresponding to the clockwise mode and the counterclockwise mode, respectively. First, we observed the characteristic of power, pattern, and divergence angles by gradually shortening cavity length. Second, we measured the relaxation oscillation frequency, observing the variance of value from Gaussian mode to the geometric-ring-mode.
Then we studied the nonlinear dynamics by pump modulation. When the modulation frequency was operated near the relaxation oscillation frequency, the period-doubling route to chaos was observed while increasing the modulation depth. Simultaneously, extreme events were observed right after chaos regime. Moreover, we observed obvious mode competition between two modes. Thus, we analyzed the noise caused by fluctuations, and then we calculated probabilities of the extreme events occurrence. Finally, we found a high correlation between extreme events and noise.
摘要 I
SUMMARY II
誌謝 VI
目錄 VII
圖目錄 IX
第一章:緒論 1
1.1 簡介 1
1.2 研究動機與目的 6
第二章:原理 7
2.1 幾何模態 7
2.2 非線性動態行為 13
2.3 雷射中的噪訊 23
第三章:幾何環形模態的產生與特性 25
3.1 實驗架構 25
3.2 實驗方法 26
3.3 實驗結果 28
第四章:幾何環形模態的非線性動態行為 36
4.2 實驗結果 38
第五章:結論與未來展望 50
5.1 結論 50
5.2 未來展望 50
參考文獻 52
1. D. Herriott, H. Kogelnik, and R. Kompfner, Off-axis paths in spherical mirror interferometers, Appl. Opt. 3, 523-526 (1964).
2. I. Ramsay and J. Degnan, A ray analysis of optical resonators formed by two spherical mirrors, Appl. Opt. 9, 385-398 (1970).
3. M.-D. Wei, W.-F. Hsieh, and C. Sung, Dynamics of an optical resonator determined by its iterative map of beam parameters, Opt. Commun. 146, 201-207 (1998).
4. J. Dingjan, M. van Exter, and J. Woerdman, Geometric modes in a single-frequency Nd: YVO4 laser, Opt. Commun. 188, 345-351 (2001).
5. H.-H. Wu, Formation of off-axis beams in an axially pumped solid-state laser, Opt. Express 12, 3459-3464 (2004).
6. Y. Chen, J. Tung, P. Chiang, H. Liang, and K. Huang, Exploring the effect of fractional degeneracy and the emergence of ray-wave duality in solid-state lasers with off-axis pumping, Phys. Rev. A 88, 013827 (2013).
7. C.-P. Chiu, C.-Y. Kuo, C.-C. Wang, H.-H. Wu, and M.-D. Wei, Geometric ring mode in a linear cavity, Laser Phys. 28(2018).
8. E. Ott, Chaos in dynamical systems (Cambridge university press, 2002).
9. 劉秉正, 非線性動力學與混沌基礎 (東北師範大學出版社, 1994).
10. S. Aberg and G. Lindgren, Height distribution of stochastic Lagrange ocean waves, Prob. Eng. Mech. 23, 359-363 (2008).
11. E. Pelinovsky and C. Kharif, Extreme ocean waves (Springer, 2008).
12. S. K. El-Labany, W. M. Moslem, N. A. El-Bedwehy, R. Sabry, and H. N. Abd El-Razek, Rogue wave in Titan’s atmosphere, Astrophys. Space Sci. 338, 3-8 (2011).
13. H. Kawamura, T. Hatano, N. Kato, S. Biswas, and B. K. Chakrabarti, Statistical physics of fracture, friction, and earthquakes, Rev. Mod. Phys. 84, 839 (2012).
14. P. Kjeldsen, A sudden disaster-in Extreme Waves, Rogue Waves 2000, 19-35 (2001).
15. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Optical rogue waves, Nature 450, 1054-1057 (2007).
16. C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. R. Leite, and J. R. Tredicce, Deterministic optical rogue waves, Phys. Rev. Lett. 107, 053901 (2011).
17. J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici, J. R. R. Leite, C. Masoller, and J. R. Tredicce, Rogue waves in optically injected lasers: Origin, predictability, and suppression, Phys. Rev. A 87, 035802 (2013).
18. C. Bonazzola, A. Hnilo, M. Kovalsky, and J. R. Tredicce, Optical rogue waves in an all-solid-state laser with a saturable absorber: importance of the spatial effects, J. Opt. 15(2013).
19. C. R. Bonazzola, A. A. Hnilo, M. G. Kovalsky, and J. R. Tredicce, Features of the extreme events observed in an all-solid-state laser with a saturable absorber, Phys. Rev. A 92, 053816 (2015).
20. S.-Y. Tsai, C.-P. Chiu, K.-C. Chang, and M.-D. Wei, Periodic and chaotic dynamics in a passively Q-switched Nd: GdVO4 laser with azimuthal polarization, Opt. Lett. 41, 1054-1057 (2016).
21. J. Soto-Crespo, P. Grelu, and N. Akhmediev, Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers, Phys. Rev. E 84, 016604 (2011).
22. C. Lecaplain, P. Grelu, J. Soto-Crespo, and N. Akhmediev, Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser, Phys. Rev. Lett. 108, 233901 (2012).
23. A. A. Hnilo, M. G. Kovalsky, M. B. Agüero, and J. R. Tredicce, Characteristics of the extreme events observed in the Kerr-lens mode-locked Ti: sapphire laser, Phys. Rev. A 91, 013836 (2015).
24. N. M. Granese, A. Lacapmesure, M. B. Aguero, M. G. Kovalsky, A. A. Hnilo, and J. R. Tredicce, Extreme events and crises observed in an all-solid-state laser with modulation of losses, Opt. Lett. 41, 3010-3012 (2016).
25. W. Klische, H. Telle, and C. Weiss, Chaos in a solid-state laser with a periodically modulated pump, Opt. Lett. 9, 561-563 (1984).
26. C.-P. Chiu, X.-W. Jiang, K.-C. Chang, and M.-D. Wei, Chaos and extreme events in an azimuthally polarized Nd: GdVO4 laser with pump modulation, Opt. Lett. 42, 423-426 (2017).
27. A. E. Siegman, Lasers (University Science Books, 1986).
28. R. Kingslake and R. B. Johnson, Lens design fundamentals (academic press, 2009).
29. M.-D. Wei and W.-F. Hsieh, Cavity-configuration-dependent nonlinear dynamics in Kerr-lens mode-locked lasers, JOSA B 17, 1335-1342 (2000).
30. J. M. Greene, A method for determining a stochastic transition, J. Math. Phys. 20, 1183-1201 (1979).
31. C. Metayer, A. Serres, E. J. Rosero, W. A. Barbosa, F. M. de Aguiar, J. R. Leite, and J. R. Tredicce, Extreme events in chaotic lasers with modulated parameter, Opt. Express 22, 19850-19859 (2014).
32. J.-M. Liu, Principles of photonics (Cambridge University Press, 2016).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top