|
Al-Bender, F. Fundamentals of friction modeling. In Proceedings, ASPE Spring Topical Meeting on Control of Precision Systems, MIT 117–122 (2010). Ang, K. H., Chong, G., Member, S. & Li, Y. PID control system analysis and design. IEEE Control Syst. 26, 32–41 (2006). Aziz, N. A. A., Alias, M. Y., Mohemmed, A. W. & Aziz, K. A. Particle swarm optimization for constrained and multiobjective problems: a brief review. In International conference on management and artificial intelligence IPEDR 6, 146–150 (2011). Barbosa, H. J. C., Lemonge, A. C. C. & Bernardino, H. S. A critical review of adaptive penalty techniques in evolutionary computation. In Evolutionary constrained optimization 1–27 (Springer, 2015). Bennett, S. A brief history of automatic control. IEEE Control Syst. 16, 17–25 (1996). Bossert, D. E., Morris, S. L., Hallgren, W. F. & Yechout, T. R. Introduction to aircraft flight mechanics: Performance, static stability, dynamic stability, and classical feedback control. (American Institute of Aeronautics and Astronautics, 2003). Brandstaätter, B. & Baumgartner, U. Particle swarm optimization - Mass-spring system analogon. IEEE Trans. Magn. 38, 997–1000 (2002). Brosilow, C. & Joseph, B. Techniques of model-based control. (Prentice Hall Professional, 2002). Cao, M., Wang, K. W., Fujii, Y. & Tobler, W. E. A hybrid neural network approach for the development of friction component dynamic model. J. Dyn. Syst. Meas. Control 126, 144–153 (2004). Clerc, M. Stagnation analysis in particle swarm optimisation or what happens when nothing happens reminder of classical PSO. Tech. Rep. CSM-460 (2006). Clerc, M. & Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002). Colosimo, B. M. & Del Castillo, E. Bayesian process monitoring, control and optimization. (Chapman and Hall/CRC, 2006). Dali, A., Bouharchouche, A. & Diaf, S. Parameter identification of photovoltaic cell/module using genetic algorithm (GA) and particle swarm optimization (PSO). In 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT) 1–6 (IEEE, 2015). Davies, A. Management Guide to Condition Monitoring in Manufacture. (Institution of Engineering and Technology, 1990). De Wit, C. C., Olsson, H., Astrom, K. J. & Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Automat. Contr. 40, 419–425 (1995). Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000). Eberhart, R. & Kennedy, J. A new optimizer using particle swarm theory. In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science 39–43 (IEEE, 1995). Elsawaf, A. & Vampola, T. Passive suspension system optimization using PSO to enhance ride comfort when crossing different types of speed control profiles. J. Traffic Logist. Eng. 3, 129–135 (2015). Gottlieb, J. Evolutionary algorithms for constrained optimization problems. Tech. Univ. Clausthal, Dep. Comput. Sci. 1, (2000). Hamamoto, K., Fukuda, T. & Sugie, T. Iterative feedback tuning of controllers for a two-mass-spring system with friction. Control Eng. Pract. 11, 1061–1068 (2003). Hashimoto, S., Hara, K., Funato, H. & Kamiyama, K. AR-based identification and control approach in vibration suppression. IEEE Trans. Ind. Appl. 37, 806–811 (2001). Hong, S. W. & Lee, C. W. Identification of linearised joint structural parameters by combined use of measured and computed frequency responses. Mech. Syst. Signal Process. 5, 267–277 (1991). Hotelling, H. Multivariate quality control. Techniques of statistical analysis. McGraw-Hill, New York (1947). Hu, X. & Eberhart, R. Solving constrained nonlinear optimization problems with particle swarm optimization. In Proceedings of the sixth world multiconference on systemics, cybernetics and informatics, 203–206 (2002). Iwasaki, M., Miwa, M. & Matsui, N. GA-based evolutionary identification algorithm for unknown structured mechatronic systems. IEEE Trans. Ind. Electron. 52, 300–305 (2005). Jain, K., Alt, F. B. & Grimshaw, S. D. Multivariate quality control-a Bayesian approach. In Annual Quality Congress Transactions-American Society for Quality Control 47, 645 (AMERICAN SOCIETY FOR QUALITY CONTROL, 1993). Jardine, A. K. S., Lin, D. & Banjevic, D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20, 1483–1510 (2006). Johansson, K. E. Field Monitoring of Nc-machines: A System Approach. (Linköping Institute of Technology, 1987). Kabzifiski, J. Oscillations and friction compensation in two-mass drive system with flexible shaft by command filtered adaptive backstepping. IFAC-PapersOnLine 48, 307–312 (2015). Kennedy, J. Particle swarm optimization. Encycl. Mach. Learn. 760–766 (2010). Kohler, M., Forero, L., Vellasco, M., Tanscheit, R. & Pacheco, M. A. PSO+: A nonlinear constraints-handling particle swarm optimization. In 2016 IEEE Congress on Evolutionary Computation (CEC) 2518–2523 (IEEE, 2016). Kouhei, O., Shibata, M. & Murakami, T. Motion control for advanced mechatronics. IEEE/ASME Trans. Mechatronics 1, 56–67 (1996). Lee, C.-Y., Huang, T.-S., Liu, M.-K. & Lan, C.-Y. Data science for vibration heteroscedasticity and predictive maintenance of rotary bearings. Energies 12, 801 (2019). Lee, J. et al. Prognostics and health management design for rotary machinery systems - Reviews, methodology and applications. Mech. Syst. Signal Process. 42, 314–334 (2014). Levin, R. I. & Lieven, N. A. J. Dynamic finite element model updating using simulated annealing and genetic algorithms. Mech. Syst. Signal Process. 12, 91–120 (1998). Li, Q., Xu, Q. & Wu, R. Low-frequency vibration suppression control in a two-mass system by using a torque feed-forward and disturbance torque observer. J. Power Electron. 16, 249–258 (2016). Liang, J. J., Qin, A. K., Suganthan, P. N. & Baskar, S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10, 281–295 (2006). Liu, L., Liu, W. & Cartes, D. A. Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors. Eng. Appl. Artif. Intell. 21, 1092–1100 (2008). Liu, Y. F., Li, J., Zhang, Z. M., Hu, X. H. & Zhang, W. J. Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mech. Sci. 6, 15–28 (2015). Lowry, C. A., Woodall, W. H., Champ, C. W. & Rigdon, S. E. A multivariate exponentially weighted moving average control chart. Technometrics 34, 46–53 (1992). Łuczak, D. Mathematical model of multi-mass electric drive system with flexible connection. In 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR) 590–595 (IEEE, 2014). Martin, K. F. A review by discussion of condition monitoring and fault diagnosis in machine tools. Int. J. Mach. Tools Manuf. 34, 527–551 (1994). Martin, K. F., Hoh, S. M. & Williams, J. H. Condition monitoring machine tool drives via health indices. Fault Detect. Superv. Saf. Tech. Process. 1991 571–576 (1992). Mastrangelo, C. M., Runger, G. C. & Montgomery, D. C. Statistical process monitoring with principal components. Qual. Reliab. Eng. Int. 12, 203–210 (1996). Michalewicz, Z. & Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 4, 1–32 (1996). Nobari, A. S., Robb, D. A. & Ewins, D. J. A new approach to modal-based structural dynamic model updating and joint identification. Mech. Syst. Signal Process. 9, 85–100 (1995). Nowopolski, K. & Wicher, B. Parametric identification of electrical drive with complex mechanical structure utilizing Particle Swarm Optimization method. In 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe) P-1 (IEEE, 2017). Orlowska-Kowalska, T. & Szabat, K. Neural-network application for mechanical variables estimation of a two-mass drive system. IEEE Trans. Ind. Electron. 54, 1352–1364 (2007). Orvosh, D. & Davis, L. Using a genetic algorithm to optimize problems with feasibility constraints. In Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence 548–553 (IEEE, 1994). Popovic, M. R., Gorinevsky, D. M. & Goldenberg, A. A. Fuzzy logic controller for accurate positioning of direct-drive mechanism using force pulses. In Proceedings of 1995 IEEE International Conference on Robotics and Automation 1, 1166–1171 (IEEE, 1995). Robinson, J. & Rahmat-Samii, Y. Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 52, 397–407 (2004). Sen, M. K., Datta-Gupta, A., Stoffa, P. L., Lake, L. W. & Pope, G. A. Stochastic reservoir modeling using simulated annealing and genetic algorithm. SPE Form. Eval. 10, 49–56 (1995). Shahgholian, G. Modeling and simulation of a two-mass resonant system with speed controller. Int. J. Inf. Electron. Eng. 3, 448 (2013). Shahgholian, G., Faiz, J. & Shafaghi, P. Analysis and simulation of speed control for two-mass resonant system. In 2009 Second International Conference on Computer and Electrical Engineering 2, 666–670 (IEEE, 2009). Shi, Y. & Eberhart, R. A modified particle swarm optimizer. In 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360) 69–73 (IEEE, 1998). Sturm, G. W., Feltz, C. J. & Yousry, M. A. An empirical Bayes strategy for analysing manufacturing data in real time. Qual. Reliab. Eng. Int. 7, 159–167 (1991). Szabat, K. & Orlowska-Kowalska, T. Vibration suppression in a two-mass drive system using PI speed controller and additional feedbacks - Comparative study. IEEE Trans. Ind. Electron. 54, 1193–1206 (2007). Throne, R. D. Frequency domain system identification of one, two, and three degree of freedom systems in an introductory controls class. In Proc. American Society for Engineering Education Annual Conference & Exposition, Paper 493, 2005 (Citeseer, 2005). Valluru, S. K. & Singh, M. Metaheuristic tuning of linear and nonlinear PID controllers to nonlinear mass spring damper system. Int. J. Appl. Eng. Res. 12, 2320–2328 (2017). Van Geffen, V. A study of friction models and friction compensation. DCT 118, 24 (2009). van Kampen, A. H. C., Strom, C. S. & Buydens, L. M. C. Lethalization, penalty and repair functions for constraint handling in the genetic algorithm methodology. Chemom. Intell. Lab. Syst. 34, 55–68 (1996). Wang, C., Yang, M., Xu, D. & Wu, H. A novel integrated identification method of model structure and parameters for drive system. In 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE) 101–107 (IEEE, 2018). Wang, J. & Sas, P. A method for identifying parameters of mechanical joints. J. Appl. Mech. 57, 337–342 (1990). Wenjing, Z. Parameter identification of LuGre friction model in servo system based on improved particle swarm optimization algorithm. In 2007 Chinese Control Conference 135–139 (IEEE, 2007). Worasucheep, C. Solving constrained engineering optimization problems by the constrained PSO-DD. In 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology 1, 5–8 (IEEE, 2008). Worden, K. et al. Identification of pre-sliding and sliding friction dynamics: Grey box and black-box models. Mech. Syst. Signal Process. 21, 514–534 (2007). Yang, T. & Lin, C. S. Identifying the stiffness and damping parameters of a linear servomechanism. Mech. Based Des. Struct. Mach. 32, 283–304 (2004). Yoshida, K. & Takamatsu, H. PSO-based model identification of a full-scale CVT drivetrain. In 2015 IEEE/SICE International Symposium on System Integration (SII) 971–976 (IEEE, 2015). Zambrano-Bigiarini, M., Clerc, M. & Rojas, R. Standard particle swarm optimisation 2011 at cec-2013: A baseline for future pso improvements. In 2013 IEEE Congress on Evolutionary Computation 2337–2344 (IEEE, 2013). Zeng, W., Gao, H. & Jing, W. An improved particle swarm optimization. Inf. Technol. J. 13, 2560–2566 (2014). Zheng, Y. Q. Parameter identification of LuGre friction model for robot joints. In Advanced Materials Research 479, 1084–1090 (Trans Tech Publ, 2012). Oriental Motor, Servo motor features overview (2018) , accessed 17 May 2019. https://www.orientalmotor.com/servo-motors/technology/servo-motor-features.html Ian Wright, An engineer's guide to CNC turning centers (2017) , accessed 17 May 2019. https://www.engineering.com/AdvancedManufacturing/ArticleID/14512/An-Engineers-Guide-to-CNC-Turning-Centers.aspx
|