跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/28 08:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪健哲
研究生(外文):Jian-JheHong
論文名稱:社群媒體為基之市場區隔趨勢預測方法與技術研發
論文名稱(外文):Development of Method and Technology for Social Media-based Market Segment Trend Prediction
指導教授:陳裕民陳裕民引用關係陳育仁陳育仁引用關係
指導教授(外文):Yuh-Min ChenYuh-Jen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:製造資訊與系統研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:78
中文關鍵詞:社群媒體市場區隔預測消費者影響力市場趨勢分析
外文關鍵詞:social mediamarket segment forecastingconsumer influencemarket trend analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
「市場」為供給者與需求者進行商品或勞務交易的地方,「行銷」(Marketing) 則是重要的商務活動之一。了解市場區隔、選擇目標市場、提供適合目標市場之商品,並施以適當的行銷策略,為當前行銷策略之核心。傳統上,企業都以市場調查法分析市場現況,除了常發生花費過多的人力、時間與成本,也存在無法及時與正確反映市場現況以及變化趨勢等問題。
隨著數位時代到來,社群媒體已成為人們重要的溝通與資訊分享工具,也是企業分析市場之重要資料來源。當前針對社群媒體為對象之市場分析相關研究,多以目標市場整體變化為主,缺乏對各市場區隔消長以及市場內元素對市場區隔消長的影響分析。因此,如何利用社群媒體資料預測市場區隔消長變化趨勢,供企業及時掌握市場變化以提升競爭優勢,為一重要研究課題。
針對市場區隔趨勢預測之需求、社群媒體內容之可用性,本研究之主要目的在設計一社群媒體為基之市場區隔趨勢預測方法,並開發其實現技術。首先從系統與微觀的角度,分析市場內元素間之影響力,設計市場影響力模型。再依此模型,設計針對社群媒體內容之市場影響力分析方法。接著設計以影響力為基之市場區隔趨勢預測方法並開發實現技術。為驗證方法之有效性,本研究首先經由實驗,取得較適當之預測參數,再依此參數進行市場區隔變化預測與比較。以實際數值與預測之結果計算兩者間的誤差,得出本研究所提之影響力為基的區隔趨勢預測方法,誤差平均值為0.0936,相較於僅利用區隔人數進行區隔趨勢預測方法的誤差平均值0.0971,約降低3.7%。故以影響力為基的市場區隔趨勢預測是可行且有效的。
Understanding the market segmentation, selecting the target market, providing products that fit the target market, and applying appropriate marketing strategies are at the heart of current marketing strategies. Traditionally, companies have used the market research method to analyze the current market conditions. In addition to the excessive manpower, time and cost, there are also problems such as the inability to timely and correctly reflect the current market conditions and trends.

With the advent of the digital era, social media has become an important communication and information sharing tool for people, and an important source of information for the analysis of the market. At present, the market-related research on social media is mainly based on the overall change of the target market. There is a lack of analysis on the impact of market segmentation and the influence of market elements on market segmentation. Therefore, how to use social media data to predict the trend of market segmentation and change, for enterprises to grasp market changes in time to enhance competitive advantage, is an important research topic.

The main purpose of this study is to design a social media-based market segment trend forecasting method and develop its implementation technology. The results show that the average error value of the influence-based segment trend prediction method of this study is 0.0936, which is about 3.7% lower than that of the 0.0971 method using the segmentation trend prediction method. Therefore, market segmentation trend prediction based on influence is feasible and effective.
摘要 I
誌謝 VI
目錄 VII
表目錄 IX
圖目錄 X
第1章、 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 2
1.4 研究議題 2
1.5 研究項目與方法 4
1.6 研究發展程序 5
第2章、 相關文獻 6
2.1 研究領域探討 6
2-1-1 消費者影響力 6
2-1-2 市場區隔 7
2-1-3 社群媒體 7
2.2 相關技術探討 9
2-2-1 自然語言處理技術 9
2-2-2 類神經網路 11
2.3 類似研究探討 13
第3章、 分析模型與方法設計 15
3.1 市場影響力概念模型設計 15
3.2 社群媒體為基之市場影響力分析方法 16
3.3 區隔趨勢預測方法設計 24
3.3.1 影響力分析(Influence Analysis) 24
3.3.2 市場區隔趨勢預測(Segment Trend Prediction) 26
第4章、 實現技術開發 27
4.1 技術架構設計 27
4.2 前處理(Preprocessing) 28
4.3 Actor資料蒐集(Actor data collection) 31
4.4 影響力分析(Influence Analysis) 34
4.5 市場區隔趨勢預測(Market segment trend prediction) 39
第5章 實作與驗證 44
5.1實作介紹 44
5.1.1. 實作環境介紹 44
5.1.2. 驗證設計 44
5.1.3 驗證過程與結果 48
5.2實作結果討論 62
5.2.1區隔趨勢預測模型調整分析 62
5.2.2市場區隔趨勢預測 67
第6章 結論與未來展望 70
6.1 結論 70
6.2 未來展望 71
參考文獻 73
Alamsyah, A. (2017, May). Social network data analytics for market segmentation in Indonesian telecommunications industry. In 2017 5th International Conference on Information and Communication Technology (ICoIC7) (pp. 1-5). IEEE.
Azarnoush Ansari & Arash Riasi. (2016). Modelling and evaluating customer loyalty using neural networks: Evidence from startup insurance companies, Future Business Journal, Vol. 2(1), pp. 15-30.
Agatonovic-Kustrin, S., & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of pharmaceutical and biomedical analysis, 22(5), 717-727.
Akshi Kumar, Himanshu Ahuja, Nikhil Kumar Singh, Deepak Gupta, Ashish Khanna & Joel J. P. C. Rodrigues. (2018). Supported matrix factorization using distributed representations for personalised recommendations on twitter, Computers & Electrical Engineering, vol. 71, pp. 569-577.
Bashar, A., Ahmad, I., & Wasiq, M. (2013). A Study of Influence of Demographic Factors on Consumer Impulse Buying Behavior. Journal of Management Research (09725814), 13(3).
Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of computational science, 2(1), 1-8.
Böttcher, M., Spott, M., Nauck, D., & Kruse, R. (2009). Mining changing customer segments in dynamic markets. Expert systems with Applications, 36(1), 155-164.
Calder, B. J., & Burnkrant, R. E. (1977). Interpersonal influence on consumer behavior: An attribution theory approach. Journal of Consumer Research, 4(1), 29-38.
Chiu, C. Y., Chen, Y. F., Kuo, I. T., & Ku, H. C. (2009). An intelligent market segmentation system using k-means and particle swarm optimization. Expert Systems with Applications, 36(3), 4558-4565.
Chen, K., Zhou, Y., & Dai, F. (2015, October). A LSTM-based method for stock returns prediction: A case study of China stock market. In 2015 IEEE International Conference on Big Data (Big Data) (pp. 2823-2824). IEEE.
Dickson, P. R. and Ginter, J. L. Market segmentation. (1987). product differentiation, and marketing strategy. The Journal of Marketing, pp. 1-10.
Forbes, L. P. (2013). Does social media influence consumer buying behavior? An investigation of recommendations and purchases. Journal of Business & Economics Research (Online), 11(2), 107.
Graves, A., Mohamed, A. R., & Hinton, G. (2013, May). Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 6645-6649). IEEE.
Goh, K. Y., Heng, C. S., & Lin, Z. (2013). Social media brand community and consumer behavior: Quantifying the relative impact of user-and marketer-generated content. Information Systems Research, 24(1), 88-107.
Govers, P. C., & Schoormans, J. P. (2005). Product personality and its influence on consumer preference. Journal of Consumer Marketing, 22(4), 189-197.
Gupta, R., & Pathak, C. (2014). A machine learning framework for predicting purchase by online customers based on dynamic pricing. Procedia Computer Science, 36, 599-605.
Haythornthwaite, C. (1996). Social network analysis: An approach and technique for the study of information exchange. Library & information science research, 18(4), 323-342.
Hawkins, D. M. (2004). The problem of overfitting. Journal of chemical information and computer sciences, 44(1), 1-12.
Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.
Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2002). Clustering validity checking methods: part II. ACM Sigmod Record, 31(3), 19-27.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02), 107-116.
Johns, N., & Gyimothy, S. (2002). Market segmentation and the prediction of tourist behavior: The case of Bornholm, Denmark. Journal of Travel Research, 40(3), 316-327.
Kusner, M., Sun, Y., Kolkin, N., & Weinberger, K. (2015, June). From word embeddings to document distances. In International Conference on Machine Learning (pp. 957-966).
Kalogirou, S. A. (2000). Applications of artificial neural-networks for energy systems. Applied energy, 67(1-2), 17-35.
Karen Howells & Ahmet Ertugan. (2017). Applying fuzzy logic for sentiment analysis of social media network data in marketing, Procedia Computer Science, vol. 120, pp. 664-670.
Kwong C.K., Jiang Huimin & LuoX.G. (2016). AI-based methodology of integrating affective design, engineering, and marketing for defining design specifications of new products, Engineering Applications of Artificial Intelligence, vol. 47, pp. 49-60.
Kenny, D. A. (1994). Interpersonal perception: A social relations analysis. Guilford Press.
Lakkaraju, H., & Ajmera, J. (2011, October). Attention prediction on social media brand pages. In Proceedings of the 20th ACM international conference on Information and knowledge management (pp. 2157-2160). ACM.
Lokesh Jain & Rahul Katarya. (2018). Discover opinion leader in online social network using firefly algorithm, Expert Systems with Applications, Available online December.
Luo, Q., & Zhong, D. (2015). Using social network analysis to explain communication characteristics of travel-related electronic word-of-mouth on social networking sites. Tourism Management, 46, 274-282.
Lee, S., Ryu, J. H., Won, J. S., & Park, H. J. (2004). Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology, 71(3-4), 289-302.
McClelland, J. L., Rumelhart, D. E., & PDP Research Group. (1986). Parallel distributed processing. Explorations in the Microstructure of Cognition, 2, 216-271.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
Ma, W., & Chen, K. (2003). Introduction to CKIP Chinese word segmentation system for the first international Chinese Word Segmentation Bakeoff. Proceedings of the Second SIGHAN Workshop on Chinese Language Processing -. doi:10.3115/1119250.1119276
Mikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S. (2010). Recurrent neural network based language model. In Eleventh annual conference of the international speech communication association.
Michal Weskida & Radoslaw Michalski. (2018). Finding Influentials in Social Networks using Evolutionary Algorithm, Journal of Computational Science, Available online December.
Mangold, W. G., & Faulds, D. J. (2009). Social media: The new hybrid element of the promotion mix. Business horizons, 52(4), 357-365.
McGuire, W. (1968). Personality and susceptibility to social influence. Handbook of personality theory and research.
Nguyen, T. H., & Shirai, K. (2015). Topic modeling based sentiment analysis on social media for stock market prediction. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (Vol. 1, pp. 1354-1364).
Osatuyi, B. (2013). Information sharing on social media sites. Computers in Human Behavior, 29(6), 2622-2631.
Otte, E., & Rousseau, R. (2002). Social network analysis: a powerful strategy, also for the information sciences. Journal of information Science, 28(6), 441-453.
Pai, M. Y., Chu, H. C., Wang, S. C., & Chen, Y. M. (2013). Electronic word of mouth analysis for service experience. Expert Systems with Applications, 40(6), 1993-2006.
Pride, W., Ferrell, O.C., Lukas, B.A., Schembri, S., Niininen, O. and Cassidy, R. (2018). Marketing Principles, 3rd Asia-Pacific ed, Cengage, pp. 200.
Pate, S. S., & Adams, M. (2013). The influence of social networking sites on buying behaviors of millennials. Atlantic Marketing Journal, 2(1), 7.
Philip Kotler. (2015). Keller Definition and Explanation of Marketing Management for 21st Century - 14th Edition.
Ratanasawadwat, N., & Jiamthapthaksin, R. (2017, July). Incorporating Social Network Thai Text Mining with Lifestyle Segmentation Analysis. In 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI) (pp. 971-975). IEEE.
Swan, J. E., & Combs, L. J. (1976). Product Performance and Consumer Satisfaction: A New Concept: An Empirical Study Examines the Influence of Physical and Psychological Dimensions of Product Performance on Consumer Satisfaction. Journal of marketing, 40(2), 25-33.
Saad, E. W., Prokhorov, D. V., & Wunsch, D. C. (1998). Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Transactions on neural networks, 9(6), 1456-1470.
Srivastava, J. (2008, June). Data mining for social network analysis. In 2008 IEEE International Conference on Intelligence and Security Informatics (pp. xxxiii-xxxiv). IEEE.
Sheth, J. N., & Parvatiyar, A. (1995). The evolution of relationship marketing. International business review, 4(4), 397-418.
Sun, J. (2012). ‘Jieba’Chinese word segmentation tool. 2018-08-25]. https://github. com/fxsjy/jieba.
Smith, T., Coyle, J. R., Lightfoot, E., & Scott, A. (2007). Reconsidering models of influence: the relationship between consumer social networks and word-of-mouth effectiveness. Journal of advertising research, 47(4), 387-397.
Solomon, M., Russell-Bennett, R., & Previte, J. (2012). Consumer behaviour. Pearson Higher Education AU.
Sundermeyer, M., Schlüter, R., & Ney, H. (2012). LSTM neural networks for language modeling. In Thirteenth annual conference of the international speech communication association.
Sata, M. (2013). Factors affecting consumer buying behavior of mobile phone devices. Mediterranean Journal of Social Sciences, 4(12), 103.
Ries, A., & Trout, J. (2000). Positioning: The Battle for Your Mind. McGrew–Hill.
Wedel, M., & Kamakura, W. A. (2012). Market segmentation: Conceptual and methodological foundations (Vol. 8). Springer Science & Business Media.
Xiang, Z., & Gretzel, U. (2010). Role of social media in online travel information search. Tourism management, 31(2), 179-188.
Yu, H. C., Huang, K., & Chen, H. H. (2012, December). Domain dependent word polarity analysis for sentiment classification. In 24th Conference on Computational Linguistics and Speech Processing, ROCLING 2012 (pp. 30-31).
Yarrow, K. (2014). Decoding the New Consumer Mind: How and why We Shop and Buy. John Wiley & Sons.
You, Z., Si, Y. W., Zhang, D., Zeng, X., Leung, S. C., & Li, T. (2015). A decision-making framework for precision marketing. Expert Systems with Applications, 42(7), 3357-3367.
Zaytar, M. A., & El Amrani, C. (2016). Sequence to sequence weather forecasting with long short-term memory recurrent neural networks. International Journal of Computer Applications, 143(11), 7-11.
Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks:: The state of the art. International journal of forecasting, 14(1), 35-62.
林彥廷. (2018). 以社群分析為基之產品創新預測方法與技術研發. 成功大學製造資訊與系統研究所學位論文, 1-60.
高聖傑. (2014). 詞性組合輔助之中文網路口碑評價分析技術研發. 成功大學製造資訊與系統研究所學位論文, 1-48.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top