跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李欣芳
研究生(外文):Hsin-FangLi
論文名稱:使用注入鎖定解調器實現之低功耗O-QPSK接收機
論文名稱(外文):A Low Power O-QPSK Receiver with Injection-Locked Demodulator
指導教授:鄭光偉鄭光偉引用關係
指導教授(外文):Kuang-Wei Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:65
中文關鍵詞:ISM頻段低功耗接收機偏移四相移鍵控注入鎖定注入鎖定正交振盪器包絡檢測器高Q值電感小環形天線
外文關鍵詞:ISM bandlow power receiverO-QPSKinjection lockedinjection locked QVCOenvelope detectorhigh Q inductorsmall loop antenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,物聯網的發展應用層面越來越廣,伴隨著無線通訊系統與個人穿戴裝置越來越盛行,對於低功率消耗、低成本以及小面積的裝置有著不可或缺的需求。而本論文將低功率消耗的需求作為主要目標。
本論文提出一個操作在ISM頻段(Industrial Scientific Medical Band),可接收並解調偏移四相移鍵控(O-QPSK)訊號之低功耗接收機。為了實現低功耗,於射頻前端電路設計中,去除高功耗的低雜訊放大器,並將正交振盪器的兩個電感由印刷電路板上的兩個環形天線取代,由於製作在印刷電路板上的天線可以實現較高的品質因數,如此一來,即可大幅地降低功耗。而解調方式是透過注入鎖定技術,將訊號注入至正交振盪器(QVCO),不僅將相位變化轉換為振幅變化,同時,利用正交振盪器之輸出訊號為正交關係,使偏移四相移鍵控調變訊號在正交震盪器的輸出上有不同相位對應著不同的振幅變化,藉由上述方式,即可使用包絡檢測器將射頻訊號直接降成基頻訊號,並取代傳統解調四相移鍵控接收機的複雜電路。本設計是使用台積電提供的0.18微米CMOS製程,供應電壓為1.3伏特,頻率操作在433百萬赫茲。
In recent years, the development and application of the Internet of Things have become more and more extensive. There are some requirements for these devices, i.e., low power consumption, low cost, and small area. And the low power consumption is the main target in this work.
This thesis proposes a low power O-QPSK receiver and operates in 433-MHz ISM-band. Thus, the power-hungry low noise amplifier (LNA) was reduced at the front-end circuit. In addition, the inductors of the quadrature voltage control oscillator (QVCO) were implemented on a printed circuit board (PCB) and which serves as a high-Q antenna. The demodulation method is based on the injection locked technique that the RF signal is injected into QVCO. When an O-QPSK signal is injected into QVCO, the I/Q channel amplitude of oscillator is different due to phase shift from injected signal. This variation can be captured by the envelope detector and, thus, demodulates the O-QPSK signal to baseband. Therefore, this architecture can reduce the complexity of the conventional O-QPSK receiver and achieve low power. A 433 MHz O-QPSK receiver was implemented with a 0.18-μm CMOS process.
List of Figures ...VII
List of Tables ...IX
Chapter 1 Introduction ...1
1.1 Motivation and Goal ...1
1.2 Thesis Organization ...4
Chapter 2 Literature Review of Low Power Receiver ...5
2.1 Introduction ...5
2.2 Injection Locked Based Receiver ...5
2.2.1 On-Off Keying (OOK) and Frequency-Shifted Keying (FSK) Demodulation ...6
2.2.2 Phase-Shifted Keying (PSK) Demodulation ...7
2.3 Low Power Quadrature Phase-Shifted Keying (QPSK) Receiver ...9
2.4 Summary ...12
Chapter 3 Proposed Offset Quadrature Phase-Shifted Keying (O-QPSK) Receiver ...13
3.1 Introduction ...13
3.2 Proposed Receiver Architecture ...14
3.2.1 External Inductor Model ...17
3.2.2 Injection Locked QVCO ...21
3.2.3 Fully Differential Self-Biased Common Source Envelope Detector ...30
3.2.4 Integrator and Comparator ...34
3.2.5 Clock Generator ...41
3.2.6 Isolation Amplifier ...43
3.3 The Simulated Results of Low Power O-QPSK Receiver ...44
3.4 Layout and Floor Plan ...46
3.5 Summary ...47
Chapter 4 Test Setup and Experimental Results ...48
4.1 Introduction ...48
4.2 Test Setup ...48
4.3 Measurement Results ...52
4.4 Summary ...57
Chapter 5 Conclusion and Future Works ...61
5.1 Conclusion ...61
5.2 Future Works ...62
Reference ...63
[1]J. A. Paradiso and T. Starner, Energy Scavenging for Mobile and Wireless Electronics, IEEE Pervasive Computing, vol. 4, no. 1, pp. 18-27, Jan-Mar 2005.
[2]J. Blanckenstein, J. Klaue, and H. Karl, A Survey of Low-Power Transceivers and Their Applications, IEEE Circuits and Systems Magazine, vol. 15, no. 3, pp. 6-17, 2015.
[3]N. M. Pletcher, S. Gambini, and J. Rabaey, A 52 μW Wake-Up Receiver with -72 dBm Sensitivity Using an Uncertain-IF Architecture, IEEE Journal of Solid-State Circuits, vol. 44, no. 1, pp. 269-280, Jan 2009.
[4]J. Bae and H. J. Yoo, A 45 μW Injection-Locked FSK Wake-Up Receiver with Frequency-to-Envelope Conversion for Crystal-Less Wireless Body Area Network, IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1351-1360, Jun 2015.
[5]K. W. Cheng and S. E. Chen, An Ultralow-Power Wake-Up Receiver Based on Direct Active RF Detection, IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 64, no. 7, pp. 1661-1672, Jul 2017.
[6]B. Razavi and R. Behzad, RF microelectronics. Prentice Hall New Jersey, 1998.
[7]T. Yi-Lin, C. Jian-You, W. Bang-Cyuan, Y. Tzu-Yu, and L. Tsung-Hsien, A 400MHz 10Mbps D-BPSK Receiver with a Reference-less Dynamic Phase-to-Amplitude Demodulation Technique, in 2014 Symposium on VLSI Circuits Digest of Technical Papers, 2014, pp. 1-2.
[8]S. Chen and K. Cheng, A 433 MHz 54 µW OOK/FSK/PSK Compatible Wake-Up Receiver with 11 µW Low-Power Mode Based on Injection-Locked Oscillator, in ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, 2016, pp. 137-140.
[9]T. Wang, Y. Tsai, C. Lee, F. Hung, and T. Lin, A 0.5-V Sub-mW Energy-Efficient Receiver in 0.18-μm CMOS for IoT Applications, in 2016 International SoC Design Conference (ISOCC), 2016, pp. 157-158.
[10]H. Cruz, H. Y. Huang, S. Y. Lee, and C. H. Luo, A 1.3 mW Low-IF, Current-Reuse, and Current-Bleeding RF Front-End for the MICS Band With Sensitivity of-97 dBm, IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 62, no. 6, pp. 1627-1636, Jun 2015.
[11]J. Masuch and M. Delgado-Restituto, A 1.1-mW-RX -81.4-dBm Sensitivity CMOS Transceiver for Bluetooth Low Energy, IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1660-1673, Apr 2013.
[12]S. J. Huang, Y. C. Yeh, H. D. Wang, P. N. Chen, and J. Lee, W-Band BPSK and QPSK Transceivers With Costas-Loop Carrier Recovery in 65-nm CMOS Technology, IEEE Journal of Solid-State Circuits, vol. 46, no. 12, pp. 3033-3046, Dec 2011.
[13]W. Chen, T. Lu, W. Ou, S. Chou, and S. Yang, A 2.4 GHz Reference-Less Receiver for 1 Mbps QPSK Demodulation, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 3, pp. 505-514, 2012.
[14]Y. Liu et al., A 770pJ/b 0.85V 0.3mm2 DCO-based phase-tracking RX featuring direct demodulation and data-aided carrier tracking for IoT applications, in 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 408-409.
[15]J. Cheng, N. Qi, P. Y. Chiang, and A. Natarajan, A Low-Power, Low-Voltage WBAN-Compatible Sub-Sampling PSK Receiver in 65 nm CMOS, IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 3018-3030, Dec 2014.
[16]J. Bae, L. Yan, and H. J. Yoo, A Low Energy Injection-Locked FSK Transceiver With Frequency-to-Amplitude Conversion for Body Sensor Applications, IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 928-937, Apr 2011.
[17]X. M. Yu, H. Rashtian, S. Mirabbasi, P. P. Pande, and D. Heo, An 18.7-Gb/s 60-GHz OOK Demodulator in 65-nm CMOS for Wireless Network-on-Chip, IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 62, no. 3, pp. 799-806, Mar 2015.
[18]B. Razavi, A Study of Injection Locking and Pulling in Oscillators, IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sep 2004.
[19]G. H. Ibrahim, A. Hafez, and A. H. Khalil, An ultra low power QPSK receiver based on super-regenerative oscillator with a novel digital phase detection technique, AEU - International Journal of Electronics and Communications, vol. 67, no. 11, pp. 967-974, 2013/11/01/ 2013.
[20]P. Palà-Schönwälder, J. Bonet-Dalmau, F. X. Moncunill-Geniz, F. d. Águila-López, and R. Giralt-Mas, A Superregenerative QPSK Receiver, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 1, pp. 258-265, 2014.
[21]F. Huang, B. Wang, Y. Tsai, and T. Lin, An Energy-Efficient QPSK Demodulation Scheme with Injection-Locking Technique for Green Radio Communication, in 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), 2014, pp. 614-617.
[22]J. N. Burghartz and B. Rejaei, On the Design of RF Spiral Inductors on Silicon, IEEE Transactions on Electron Devices, vol. 50, no. 3, pp. 718-729, Mar 2003.
[23]S. Koziel and P. Kurgan, Expedited EM-Driven Generation of Pareto-Optimal Trade-Off Curves for Variable-Turn on-Chip Inductors, IET Microwaves Antennas & Propagation, vol. 12, no. 7, pp. 1205-1210, Jun 2018.
[24]J. L. Bohorquez, A. P. Chandrakasan, and J. L. Dawson, A 350 μW CMOS MSK Transmitter and 400 μW OOK Super-Regenerative Receiver for Medical Implant Communications, IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1248-1259, Apr 2009.
[25]R. L. Bunch, D. I. Sanderson, and S. Raman, Quality Factor and Inductance in Differential IC Implementations, IEEE Microwave Magazine, vol. 3, no. 2, pp. 82-92, Jun 2002.
[26]R. Aparicio and A. Hajimiri, A Noise-Shifting Differential Colpitts VCO, IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec 2002.
[27]K. W. Cheng and M. Je, A Current-Switching and gm-Enhanced Colpitts Quadrature VCO, IEEE Microwave and Wireless Components Letters, vol. 23, no. 3, pp. 143-145, Mar 2013.
[28]R. Adler, A Study of Locking Phenomena in Oscillators, Proceedings of the Institute of Radio Engineers, vol. 34, no. 6, pp. 351-357, 1946.
[29]K. Cheng, X. Liu, and M. Je, A 2.4/5.8 GHz 10 μW Wake-Up Receiver with −65/−50 dBm Sensitivity Using Direct Active RF Detection, in 2012 IEEE Asian Solid State Circuits Conference (A-SSCC), 2012, pp. 337-340.
[30]H. Yan, J. G. Macias-Montero, A. Akhnoukh, L. C. N. de Vreede, J. R. Long, and J. N. Burghartz, An Ultra-Low-Power BPSK Receiver and Demodulator Based on Injection-Locked Oscillators, IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1339-1349, May 2011.
[31]A. S. Rekhi and A. Arbabian, A 14.5mm2 8nW −59.7dBm-Sensitivity Ultrasonic Wake-Up Receiver for Power-, Area-, and Interference-Constrained Applications, in 2018 IEEE International Solid - State Circuits Conference - (ISSCC), 2018, pp. 454-456.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top