跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/13 17:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏穎
研究生(外文):Bo-YingHuang
論文名稱:基於 NOMA 中繼網路之最佳功率分配
論文名稱(外文):Optimum Power Allocation for NOMA-Based Relay Networks
指導教授:蘇淑茵蘇淑茵引用關係
指導教授(外文):Sok-Ian Sou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:58
中文關鍵詞:非正交多重接取(NOMA)diamond 中繼網路系統最佳功率分配可達速率
外文關鍵詞:Non-orthogonal multiple access (NOMA)diamond relay networksoptimum power allocationachievable rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,為了提升整體可達速率,我們考慮了使用非正交多重接取技術 (NOMA)的雙躍進(dual-hop)中繼網路系統,使得傳送端得以藉由兩個中繼站傳送資訊至接收端。我們重新構想了連續干擾消除法(SIC)與功率的限制條件,然而所有的通道資訊需假設為已知,方能執行後續的流程。而我們提出三種方法來提升整體可達速率。第一,我們提出一種極具效率並稱為 FBPA的演算法來逼近 max-min 最佳化問題的解。第二,我們將 FBPA 的最佳化問題轉換為凸優化問題,並使用 Karush-Kuhn-Tucker (KKT) 定理來解決。比起現有的研究,無論兩個中繼站是鄰近或遠離接收端,此兩種方法皆能提供更高的效能;然而,當中繼站過度靠近接收端時,這兩種方法的效能都會逐步下降。為了解決這個問題,我們最後提出了一個新的 diamond 合作式非正交多重接取(cooperative NOMA)的中繼網路架構,或可稱為 C-FBPA,並以 KKT 定理分析求得最佳功率分配。最後,模擬結果會說明中繼站的位置、功率的分配與可達速率的比例分佈此三者之間的關係。同時我們的方法也藉由模擬結果證明可以提供比現有相關研究更佳的效能。
In this paper, we consider the non-orthogonal multiple access (NOMA) dual-hop relay networks to boost the achievable rate, where a source transmits two data symbols to a destination through two relays. The constraints of the successive interference cancellation (SIC) for decoding, and the joint optimization for power allocation are newly formulated, and the channel state information is required to the network before all the procedures. Explicitly, three approaches are examined to advance the achievable rate. First, a simple and efficient algorithm, flow-balance power-allocation (FBPA), is developed by a max-min optimization problem to approach the solutions. Second, the problem of FBPA algorithm is converted into a standard form of a convex optimization problem, and we treat it suitably by Karush-Kuhn-Tucker (KKT) theorem. These two methods can offer higher performance than the existing works whether the relays are either near or far from the destination; however, they may degrade while the relays are near the destination. To address this issue, finally, we propose a novel cooperative NOMA diamond relay networks, C-FBPA, and solve it by KKT theorem to obtain the optimum power allocation. Simulation results reveal the relation among the relay placement, power allocation, and rate distribution, and demonstrate that our methods definitely outperform the existing relevant studies.
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . i
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . iii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1 Introduction 1
2 Related Work 5
3 Diamond Relay Networks 7
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 7
3.2 Jointly Optimized Power Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Flow-Balance Power-Allocation Algorithm . . . . . . . . . . . . . . . . . . 11
3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 13
4 Diamond Relay Networks with or without Cooperation 19
4.1 Optimization for Diamond Relay Networks . . . . . . . . . . . . . . . . . .19
4.1.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Mathematical Derivations . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .23
4.2 Optimization for Cooperative Diamond Relay Networks . . . . . . 27
4.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Mathematical Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.1 Performance of FBPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4.3.2 Performance of C-FBPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
5 Conclusion 53
Bibliography 53
[1] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi,
“Non-orthogonal multiple access (noma) for cellular future radio access, in 2013 IEEE 77th vehicular technology conference (VTC Spring). IEEE, 2013, pp. 1–5.
[2] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-orthogonal multiple access for 5g: solutions, challenges, opportunities, and future research trends, IEEE Communications Magazine, vol. 53, no. 9, pp. 74–81, 2015.
[3] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, and H. V. Poor,“Application of non-orthogonal multiple access in lte and 5g networks, IEEE Communications Magazine, vol. 55, no. 2, pp. 185–191, 2017.
[4] A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (noma) for future radio access, in 2013 International Symposium on Intelligent Signal Processing and Communication Systems. IEEE, 2013, pp. 770–774.
[5] Y. Saito, A. Benjebbour, Y. Kishiyama, and T. Nakamura, “System-level performance evaluation of downlink non-orthogonal multiple access (noma), in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE, 2013, pp. 611–615.
[6] L. Yuan, J. Pan, N. Yang, Z. Ding, and J. Yuan, “Successive interference cancellation for ldpc coded nonorthogonal multiple access systems, IEEE Transactions on Vehicular Technology, vol. 67, no. 6, pp. 5460–5464, 2018.
[7] I. A. Mahady, E. Bedeer, S. Ikki, and H. Yanikomeroglu, “Sum-rate maximization of noma systems under imperfect successive interference cancellation, IEEE Communications Letters, 2019.
[8] S. R. Islam, M. Zeng, O. A. Dobre, and K.-S. Kwak, “Resource allocation for downlink noma systems: Key techniques and open issues, IEEE Wireless Communications, vol. 25, no. 2, pp. 40–47, 2018.
[9] C.-L. Wang, J.-Y. Chen, and Y.-J. Chen, “Power allocation for a downlink nonorthogonal multiple access system, IEEE wireless communications letters, vol. 5, no. 5, pp. 532–535, 2016.
[10] S. Ali, E. Hossain, and D. I. Kim, “Non-orthogonal multiple access (noma) for downlink multiuser mimo systems: User clustering, beamforming, and power allocation, IEEE access, vol. 5, pp. 565–577, 2016.
[11] S. Timotheou and I. Krikidis, “Fairness for non-orthogonal multiple access in 5g systems, IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1647–1651, 2015.
[12] N. Zhang, J. Wang, G. Kang, and Y. Liu, “Uplink nonorthogonal multiple access in 5g systems, IEEE Communications Letters, vol. 20, no. 3, pp. 458–461, 2016.
[13] Z. Yang, Z. Ding, P. Fan, and N. Al-Dhahir, “A general power allocation scheme to guarantee quality of service in downlink and uplink noma systems, IEEE transactions on wireless communications, vol. 15, no. 11, pp. 7244–7257, 2016.
[14] M. Al-Imari, P. Xiao, M. A. Imran, and R. Tafazolli, “Uplink non-orthogonal multiple access for 5g wireless networks, in 2014 11th international symposium on wireless communications systems (ISWCS). IEEE, 2014, pp. 781–785.
[15] A. Asadi, Q.Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks, IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1801–1819, 2014.
[16] Y. B. Song, H. S. Kang, and D. K. Kim, “5g cellular systems with d2d assisted noma relay, in 2016 URSI Asia-Pacific Radio Science Conference (URSI APRASC). IEEE, 2016, pp. 1–3.
[17] J. Liu, N. Kato, H. Ujikawa, and K. Suzuki, “Device-to-device communication for mobile multimedia in emerging 5g networks, ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol. 12, no. 5s, p. 75, 2016.
[18] J. Zhao, Y. Liu, K. K. Chai, Y. Chen, M. Elkashlan, and J. Alonso-Zarate, “Nomabased d2d communications: Towards 5g, in 2016 IEEE Global Communications Conference (GLOBECOM). IEEE, 2016, pp. 1–6.
[19] Z. Ding, M. Peng, and H. V. Poor, “Cooperative non-orthogonal multiple access in 5g systems, IEEE Communications Letters, vol. 19, no. 8, pp. 1462–1465, 2015.
[20] J.-B. Kim and I.-H. Lee, “Non-orthogonal multiple access in coordinated direct and relay transmission, IEEE Communications Letters, vol. 19, no. 11, pp. 2037–2040, 2015.
[21] Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, “Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer, IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 938–953, 2016.
[22] K. Janghel and S. Prakriya, “Performance of adaptive oma/cooperative-noma scheme with user selection, IEEE Communications Letters, vol. 22, no. 10, pp. 2092–2095, 2018.
[23] C. Xue, Q. Zhang, Q. Li, and J. Qin, “Joint power allocation and relay beamforming in nonorthogonal multiple access amplify-and-forward relay networks, IEEE Transactions on Vehicular Technology, vol. 66, no. 8, pp. 7558–7562, 2017.
[24] M. F. Kader and S. Y. Shin, “Cooperative relaying using space-time block coded non-orthogonal multiple access, IEEE Transactions on Vehicular Technology, vol. 66, no. 7, pp. 5894–5903, 2016.
[25] R.-H. Gau, H.-T. Chiu, C.-H. Liao, and C.-L. Wu, “Optimal power control for noma wireless networks with relays, IEEE Wireless Communications Letters, vol. 7, no. 1, pp. 22–25, 2017.
[26] M. F. Kader, M. B. Uddin, S. R. Islam, and S. Y. Shin, “Capacity and outage analysis of a dual-hop decode-and-forward relay-aided noma scheme, Digital Signal Processing, vol. 88, pp. 138–148, 2019.
[27] O. Abbasi, A. Ebrahimi, and N. Mokari, “Noma inspired cooperative relaying system using an af relay, IEEE Wireless Communications Letters, vol. 8, no. 1, pp. 261–264, 2019.
[28] S. Wang, S. Cao, and R. Ruby, “Optimal power allocation in noma-based two-path successive af relay systems, EURASIP Journal on Wireless Communications and Networking, vol. 2018, no. 1, p. 273, 2018.
[29] D. Wan, M. Wen, F. Ji, H. Yu, and F. Chen, “On the achievable sum-rate of noma-based diamond relay networks, IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1472–1486, 2019.
[30] D. Wan, M. Wen, H. Yu, Y. Liu, F. Ji, and F. Chen, “Non-orthogonal multiple access for dual-hop decode-and-forward relaying, in 2016 IEEE Global Communications Conference (GLOBECOM). IEEE, 2016, pp. 1–6.
[31] Z. Ding, H. Dai, and H. V. Poor, “Relay selection for cooperative noma, IEEE Wireless Communications Letters, vol. 5, no. 4, pp. 416–419, 2016.
[32] R. Jiao, L. Dai, J. Zhang, R. MacKenzie, and M. Hao, “On the performance of noma-based cooperative relaying systems over rician fading channels, IEEE Transactions on Vehicular Technology, vol. 66, no. 12, pp. 11 409–11 413, 2017.
[33] D. Wan, M. Wen, F. Ji, Y. Liu, and Y. Huang, “Cooperative noma systems with partial channel state information over nakagami-m fading channels, IEEE Transactions on Communications, vol. 66, no. 3, pp. 947–958, 2018.
[34] S. Wang and H. Ji, “Distributed power allocation scheme for multi-relay sharedbandwidth
(mrsb) wireless cooperative communication, IEEE Communications Letters, vol. 16, no. 8, pp. 1263–1265, 2012.
[35] S. Wang, R. Ruby, V. C. Leung, Z. Yao, X. Liu, and Z. Li, “Sum-power minimization problem in multisource single-af-relay networks: A new revisit to study the optimality, IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 9958–9971, 2017.
[36] K. Higuchi and A. Benjebbour, “Non-orthogonal multiple access (noma) with successive interference cancellation for future radio access, IEICE Transactions on Communications, vol. 98, no. 3, pp. 403–414, 2015.
[37] D. Wan, M. Wen, F. Ji, H. Yu, and F. Chen, “Non-orthogonal multiple access for cooperative communications: Challenges, opportunities, and trends, IEEE Wireless Communications, vol. 25, no. 2, pp. 109–117, 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top