|
[1]Zhu, R. X., Seto, W. K., Lai, C. L., & Yuen, M. F. (2016). Epidemiology of hepatocellular carcinoma in the Asia-Pacific region. Gut and liver, 10(3), 332. [2]Fridman, W. H., Pages, F., Sautes-Fridman, C., & Galon, J. (2012). The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer, 12(4), 298. [3]Ishak, K., Baptista, A., Bianchi, L., Callea, F., De Groote, J., Gudat, F., ... & Phillips, M. J. (1995). Histological grading and staging of chronic hepatitis. Journal of hepatology, 22(6), 696-699. [4]https://kknews.cc/zh-tw/health/pbk2xp.html [5]https://www.britannica.com/science/liver [6]Lai, C. L., Ratziu, V., Yuen, M. F., & Poynard, T. (2003). Viral hepatitis B. The Lancet, 362(9401), 2089-2094. [7]Zhou, Z., Shin, J., Zhang, L., Gurudu, S., Gotway, M., & Liang, J. (2017). Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7340-7351). [8]Wang, K., Zhang, D., Li, Y., Zhang, R., & Lin, L. (2016). Cost-effective active learning for deep image classification. IEEE Transactions on Circuits and Systems for Video Technology, 27(12), 2591-2600. [9]Yang, L., Zhang, Y., Chen, J., Zhang, S., & Chen, D. Z. (2017, September). Suggestive annotation: A deep active learning framework for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 399-407). Springer, Cham. [10]Gorriz, M., Carlier, A., Faure, E., & Giro-i-Nieto, X. (2017). Cost-effective active learning for melanoma segmentation. arXiv preprint arXiv:1711.09168. [11]Ozdemir, F., Peng, Z., Tanner, C., Fuernstahl, P., & Goksel, O. (2018). Active learning for segmentation by optimizing content information for maximal entropy. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (pp. 183-191). Springer, Cham. [12]Mackowiak, R., Lenz, P., Ghori, O., Diego, F., Lange, O., & Rother, C. (2018). Cereals-cost-effective region-based active learning for semantic segmentation. arXiv preprint arXiv:1810.09726. [13]Modified HAI Scoring System (Ishak et al., 1995) [14]He, K., Girshick, R., & Dollár, P. (2018). Rethinking imagenet pre-training. arXiv preprint arXiv:1811.08883. [15]Cao, H., Bernard, S., Heutte, L., & Sabourin, R. (2018, June). Improve the performance of transfer learning without fine-tuning using dissimilarity-based multi-view learning for breast cancer histology images. In International Conference Image Analysis and Recognition (pp. 779-787). Springer, Cham. [16]Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? In Advances in neural information processing systems (pp. 3320-3328). [17]Milletari, F., Navab, N., & Ahmadi, S. A. (2016, October). V-net: Fully convolutional neural networks for volumetric medical image segmentation. In 2016 Fourth International Conference on 3D Vision (3DV) (pp. 565-571). IEEE. [18]Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., ... & Glocker, B. (2018). Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999. [19]Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. [20]Hu, B., Yang, X. R., Xu, Y., Sun, Y. F., Sun, C., Guo, W., ... & Fan, J. (2014). Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clinical Cancer Research, 20(23), 6212-6222. [21]Kane, R. C., Farrell, A. T., Madabushi, R., Booth, B., Chattopadhyay, S., Sridhara, R., ... & Pazdur, R. (2009). Sorafenib for the treatment of unresectable hepatocellular carcinoma. The oncologist, 14(1), 95-100. [22]Kobayashi, N., Usui, S., Kikuchi, S., Goto, Y., Sakai, M., Onizuka, M., & Sato, Y. (2012). Preoperative lymphocyte count is an independent prognostic factor in node-negative non-small cell lung cancer. Lung cancer, 75(2), 223-227. [23]Ertekin, S., Huang, J., Bottou, L., & Giles, L. (2007, November). Learning on the border: active learning in imbalanced data classification. In Proceedings of the sixteenth ACM conference on Conference on information and knowledge management (pp. 127-136). ACM. [24]Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning (pp. 1050-1059). [25]Kendall, A., Badrinarayanan, V., & Cipolla, R. (2015). Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680. [26]Kubat, M., & Matwin, S. (1997, July). Addressing the curse of imbalanced training sets: one-sided selection. In Icml (Vol. 97, pp. 179-186). [27]Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. [28]Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980-2988). [29]Fu, C., Qu, W., & Yang, Y. (2013). Actively learning from mistakes in class imbalance problems. IFAC Proceedings Volumes, 46(13), 341-346. [30]https://www.pathpedia.com/education/eatlas/histopathology/general_pathology/chronic_inflammation_-_plasma_cells.aspx
|