跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/30 20:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱俊凱
研究生(外文):Chiu, Chun-Kai
論文名稱:發展噻吩橋基之紫質染料敏化太陽能電池
論文名稱(外文):Porphyrins Bearing Thiophene Spacers for Dye-Sensitized Solar Cell
指導教授:林敬堯林敬堯引用關係
指導教授(外文):Lin, Ching-Yao
口試委員:林敬堯鄭淑華吳仁彰
口試委員(外文):Lin, Ching-YaoCheng, Shu-HuaWu, Ren-Jang
口試日期:2019-07-31
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:75
中文關鍵詞:噻吩紫質染料敏化太陽能電池
DOI:doi:10.6837/ncnu201900196
ORCID或ResearchGate:Thiophene
IG URL:dye-sensitized solar cells
Facebook:porphyrin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
通過在紫質和錨定基團之間插入不同數量的噻吩橋基,合成出新穎鋅紫質染料──PS1、PS2、PS3 以及PS1’,應用於染料敏化太陽能電池。實驗結果顯示在紫質和錨定基團之間插入一個噻吩橋基的PS1 染料具有最佳的光伏性能──JSC = 16.27 mA cm-2,VOC = 730 mV,FF = 0.72,總光電轉換效率η = 8.48 %。
  與實驗室先前發表過的LD14 染料相比, PS1 表現出類似的性質。此實驗結果推測噻吩橋基或是苯乙炔基橋基都是適合應用於染料敏化太陽能電池染料設計上的橋基。
  A new series of zinc porphyrins (PS1, PS2, PS3 and PS1’) were synthesized for dyesensitized solar cells (DSSCs). By inserting different number of thiophene spacer between the porphyrin core and anchoring group, the result showed that the porphyrin dye with thiophene spacer had the best photovoltaic performances in the series. The best porphyrin, PS1, showing the JSC = 16.27 mA cm−2, VOC = 730 mV, FF = 0.72, and an overall power conversion efficiency η = 8.48 %.
  Comparing with one of our previous dyes, LD14, PS1 shows comparable performance. This result suggests that both thiophene spacer and phenylethynyl spacer were both good spacer for DSSCs.
目次
謝誌 i
摘要 ii
Abstract iii
目次 iv
表目次 vi
圖目次 vii
第一章 序論 1
1-1. 前言 1
1-2. 太陽光譜 2
1-3. 太陽能電池簡介 4
1-3-1. 矽晶太陽能電池 5
1-3-2. 複合式太陽能電池 5
1-3-3. 有機太陽能電池 6
1-3-4. 無機太陽能電池 6
第二章 染料敏化太陽能電池 8
2-1. 染料敏化太陽能電池簡介 8
2-2. 染料敏化太陽能電池結構與組成介紹 9
2-2-1. 透明導電氧化物 (Transparent Conductive Oxide, TCO) 9
2-2-2. 奈米結構半導體材料 (Semiconductor) 9
2-2-3. 光敏劑 (Sensitizers) 10
2-2-4. 電解質 (Electrolyte) 12
2-2-5. 對電極 (Counter electrode) 13
2-3. 染料敏化太陽能電池工作原理 14
2-4. 染料敏化太陽能電池之光敏劑 16
2-4-1. 釕金屬光敏劑 16
2-4-2. 紫質光敏劑 20
2-4-3. 有機分子光敏劑 29
2-5. 光敏劑分子的堆疊現象 32
2-6. 太陽能電池元件之光伏性質測量 33
2-6-1. 光電總轉換效率量測 33
2-6-2. Incident Photon to Current Conversion Efficient (IPCE) 34
2-7. 染料敏化太陽能電池元件之阻抗圖譜量測 35
2-7-1. Electrochemistry impedance spectroscopy (EIS) 35
2-7-2. Intensity-modilated photocurrent /voltage spectroscopy (IMP/VS) 36
2-7-3. Charge Extraction (CE) 36
第三章 實驗藥品與儀器 37
3-1. 實驗藥品 37
3-2. 電池元件使用之染料結構與分子量 38
3-3. 實驗設備 39
第四章 DSSC元件製程 40
4-1. FTO導電玻璃之處理 40
4-2. TiO2陽極製作 41
4-2-1. 清洗FTO導電玻璃 41
4-2-2. 網版印刷TiO2漿料: 41
4-3. 白金對電極製作 42
4-4. 染料敏化太陽能電池後處理及元件封裝流程 43
第五章 本論文之研究動機與結果討論 44
5-1. 研究動機與染料結構設計 44
5-2. 噻吩橋基之紫質光敏劑介紹 45
5-3. PS1 ~ PS3光敏劑之Density functional theory (DFT) 理論計算 46
5-4. PS系列光敏劑與LD14光敏劑的UV-Vis吸收光譜數據 48
5-5. PS系列光敏劑吸附於TiO2薄膜上的UV-Vis吸收光譜圖 49
5-6. PS系列光敏劑與LD14光敏劑之電子能階 50
5-7. PS系列光敏劑與LD14光敏劑電池元件之光伏性質探討 52
5-8. 元件EIS、IMPS、IMVS與CE之探討 54
5-8-1. 元件EIS探討 54
5-8-2. 元件IMPS與IMVS之探討 58
5-8-3. 元件CE之探討 61
5-9. 元件穩定度測試 63
5-10. 總結 64
參考文獻 65
附錄 68
附錄一 染料之UV-Vis與PL光譜與CV圖譜 68
附錄二 PS系列光敏劑UV-Vis與PL光譜均一化之圖譜 69
附錄三 單顆電池數據 70
附錄四 EIS fitting原始數據 71




表目次
表2 1 太陽能電池元件吸收波長與相對應產生的電流密度17 11
表2 2 電解質常用的有機溶劑22 13
表2 3 紫質光敏劑之元件參數18 22
表3 1 實驗藥品 37
表3 2 電池元件使用之染料結構與分子量 38
表3 3 染敏太陽能電池(DSSC)所使用到的設備 39
表5 1 LD14與PS系列溶解於THF中的UV-Vis吸收光譜數據 48
表5 2 PS系列光敏劑與LD14光敏劑之能階作圖數據 51
表5 3 PS系列光敏劑與LD14光敏劑電池元件之光伏數據a 53
附表1 單顆電池數據 70



圖目次
圖1 1 近十年來我國發電比例1 1
圖1 2 太陽光譜圖3 2
圖1 3 空氣質量示意圖4 3
圖1 4 太陽能電池分類表 4
圖1 5 鈣鈦礦晶體結構示意圖10 6
圖1 6 歷年來各類太陽能電池元件的光電轉換效率發展11 7
圖2 1 瑞士科技會展中心15 8
圖2 2 染料敏化太陽能電池結構圖 9
圖2 3 常見半導體材料之能階16 10
圖2 4 羧酸根吸附在TiO2上的三種形式18 11
圖2 5 能階位置與電子在染料中傳遞示意圖 12
圖2 6 染敏太陽能電池之工作原理圖26 14
圖2 7 N3光敏劑結構示意圖 16
圖2 8 Black dye光敏劑結構示意圖 17
圖2 9 N719光敏劑結構示意圖 17
圖2 10 Z907光敏劑結構示意圖 18
圖2 11 CYC-B1光敏劑結構示意圖 18
圖2 12 C101 (左) 與C102 (中) 光敏劑結構示意圖,光敏劑吸附在二氧化鈦奈米半導體上的吸收光譜圖 (右) 19
圖2 13 CYC-B11光敏劑結構示意圖與光敏劑莫爾吸收係數光譜 19
圖2 14 porphyrin結構示意圖 20
圖2 15 血紅素 (左) 與葉綠素 (右) 結構示意圖 20
圖2 16 ZnOEP 與四軌域模型之吸收光譜關聯性35 21
圖2 17 [tetrakis(4-carboxyphenyl)porphyrinato] zinc結構圖 (左) 及其IPCE圖 (右)36 22
圖2 18 YD0 (左) 及YD1 (右) 結構示意圖39 23
圖2 19 PE1~PE4結構示意圖40 23
圖2 20 PE1~PE4之DFT理論計算結果40 24
圖2 21 LD11 ~ LD14結構示意圖41 24
圖2 22 YD2-o-C8與Y123結構示意圖42 25
圖2 23 LD系列結構示意圖及LD14系列與LD16之理論計算分子圖43 25
圖2 24 SM371及SM315結構示意圖與J-V和IPCE圖44 26
圖2 25 LWP12-14結構示意圖45 26
圖2 26 (a)Tamdem cell構造示意圖(b)SGT-021及SGT-137之光譜圖47 27
圖2 27 SGT-021、SGT-121及SGT-137結構圖46, 47 27
圖2 28 以五圓雜還作為橋基之紫質光敏劑結構示意圖 28
圖2 29 有機分子設計基礎(D-π-A結構)示意圖49 29
圖2 30 有機染料MK系列分子染料結構示意圖50 29
圖2 31 有機分子染料C281結構示意圖51 30
圖2 32 ADEKA-1及LEG-4結構示意圖以及電池設計概念52 30
圖2 33 ZL003結構示意圖53 31
圖2 34 含有thiophene結構之高效率有機光敏劑 31
圖2 35 分子堆疊示意圖56 32
圖2 36 激子模型示意圖57 32
圖2 37 J-V曲線及參數圖58 33
圖2 38 IPCE示意圖 34
圖2 39 (a) EIS (b) IMPS (c) IMVS之工作原理(左圖)及阻抗譜與J-V圖之間的關係(右圖)59 35
圖2 40 (a) EIS之Nyquist圖譜(b)模擬之等效電路圖59 35
圖2 41 (a) IMPS (b) IMVS之complex impedance圖譜59 36
圖2 42 (a) IMPS (b)IMVS之Nyquist圖譜59 36
圖5 1 LD14、LD16以及PS系列光敏劑結構示意圖 44
圖5 2 PS系列光敏劑與LD14光敏劑結構示意圖 45
圖5 3 PS1 ~ PS3 DFT理論計算圖 47
圖5 4 LD14與PS系列溶解於THF中的UV-Vis吸收光譜圖 48
圖5 5 PS系列光敏劑溶解於THF中與吸附在TiO2薄膜上的UV-Vis吸收光譜圖 49
圖5 6 PS系列光敏劑與LD14光敏劑之能階位置分布圖 51
圖5 7 PS系列光敏劑與LD14光敏劑電池元件之J-V curve (左) 與IPCE圖譜 (右) 52
圖5 8 LD14元件與PS1元件之EISNyquist圖譜 (a)照光 (b) 不照光 (c) fitting出之化學電容 (Cm) 圖譜 (d) fitting出之電荷重組電阻 (Rrec) 圖譜 55
圖5 9 PS1元件與PS1’元件之EIS Nyquist圖譜 (a) 照光 (b) 不照光 (c) fitting出之化學電容 (Cm) 圖譜 (d) fitting出之電荷重組電阻 (Rrec) 圖譜 56
圖5 10 PS1元件、PS2元件與PS3元件之EIS Nyquist圖譜 (a) 照光 (b) 不照光 (c) fitting出之化學電容 (Cm) 圖譜 (d) fitting出之電荷重組電阻 (Rrec) 圖譜 57
圖5 11 LD14與PS1元件之 (a) IMPS與 (b) IMVS圖譜 58
圖5 12 PS1與PS1’元件之 (a) IMPS與 (b) IMVS 圖譜 59
圖5 13 PS1、PS2與PS3元件之 (a) IMPS與 (b) IMVS 圖譜 60
圖5 14 LD14與PS1元件之CE圖譜 61
圖5 15 PS1與PS1’元件之CE圖譜 62
圖5 16 PS1、PS2與PS3元件之CE圖譜 62
圖5 17 LD14與PS系列元件於室溫1500小時之測試結果 63
附圖1 染料之UV-Vis與PL光譜與CV圖譜 68
附圖2 PS系列UV-Vis與PL光譜均一化之圖譜 69
附圖3 LD14之EIS fitting原始數據 71
附圖4 PS1之EIS fitting原始數據 72
附圖5 PS2之EIS fitting原始數據 73
附圖6 PS3之EIS fitting原始數據 74
附圖7 PS1’之EIS fitting原始數據 75

1.台灣電力公司,https://www.taipower.com.tw/tc/Chart.aspx?mid=194.
2.Globe Solar Energy Inc, http://globesolarenergy.com/.
3.Wu, H. W.; Emadi, A.; de Graaf, G.; Leijtens, J.; Wolffenbuttel, R. F., Design and Fabrication of an Albedo Insensitive Analog Sun Sensor. Procedia Engineering 2011, 25, 527-530.
4.PHOTOVOLTAIC CHARACTERIZATION, https://www3.nd.edu/~kamatlab/facilities_physchar.html.
5.Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (version 43). Progress in Photovoltaics: Research and Applications 2014, 22, 1-9.
6.Halliday Principle of Physics (9th edition).
7.Kearns, D.; Calvin, M., Photovoltaic Effect and Photoconductivity in Laminated Organic Systems. J Chem. Phys. 1958, 29, 950-951.
8.Che, X.; Li, Y.; Qu, Y.; Forrest, S. R., High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nature Energy 2018, 3, 422-427.
9.Akihiro Kojima, K. T., Yasuo Shirai, and Tsutomu Miyasaka, Organometal Halide Perovskites as Visible- Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
10.Santomauro FG, Grilj J, Mewes L, Nedelcu G, Yakunin S, Rossi T, Capano G, Al Haddad A, Budarz J, Kinschel D, Ferreira DS, Rossi G, Gutierrez Tovar M, Grolimund D, Samson V, Nachtegaal M, Smolentsev G, Kovalenko MV, Chergui M. Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy. Struct Dyn. 2016, 4, 044002.
11.美國國家再生能源研究室,https://www.nrel.gov/pv/cell-efficiency.html.
12.Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T., Dye sensitised Zinc oxide: Aqueous electrolyte: Platinum photocell. Nature 1976, 261, 402-403.
13.O'Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-740.
14.Grätzel, M., Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorg. Chem. 2005, 44, 6841-6851.
15.瑞士科技會展中心,https://ch.fiylo.com/venue-lausanne/swisstech-convention-center-24164/.
16.Ola, O.; Maroto-Valer, M. M., Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photoch. Photobio. C 2015, 24, 16-42.
17.Smestad, G. P.; Krebs, F. C.; Lampert, C. M.; Granqvist, C. G.; Chopra, K. L.; Mathew, X.; Takakura, H., Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells. Sol. Energ. Mat. Sol. C. 2008, 92, 371-373.
18.Nazeeruddin, M. K.; Humphry-Baker, R.; Officer, D. L.; Campbell, W. M.; Burrell, A. K.; Grätzel, M., Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir 2004, 20, 6514-6517.
19.Schlichthörl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J., Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells:  A Study by Intensity Modulated Photovoltage Spectroscopy. J. Phys. Chem. B 1997, 101, 8141-8155.
20.Kelly, C. A.; Farzad, F.; Thompson, D. W.; Stipkala, J. M.; Meyer, G. J., Cation-Controlled Interfacial Charge Injection in Sensitized Nanocrystalline TiO2. Langmuir 1999, 15, 7047-7054.
21.Kopidakis, N.; Neale, N. R.; Frank, A. J., Effect of an Adsorbent on Recombination and Band-Edge Movement in Dye-Sensitized TiO2 Solar Cells:  Evidence for Surface Passivation. J. Phys. Chem. B 2006, 110, 12485-12489.
22.Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G., Electrolytes in dye-sensitized solar cells. Chem. Rev. 2015, 115, 2136-73.
23.Roy-Mayhew, J. D.; Boschloo, G.; Hagfeldt, A.; Aksay, I. A., Functionalized Graphene Sheets as a Versatile Replacement for Platinum in Dye-Sensitized Solar Cells. ACS Appl. Mater. Inter. 2012, 4, 2794-2800.
24.Suzuki, K.; Yamaguchi, M.; Kumagai, M.; Yanagida, S., Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells. Chem. Lett. 2002, 32, 28-29.
25.Thomas, S.; Deepak, T. G.; Anjusree, G. S.; Arun, T. A.; Nair, S. V.; Nair, A. S., A review on counter electrode materials in dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 4474-4490.

26.Wang, M.; Grätzel, C.; Zakeeruddin, S. M.; Grätzel, M., Recent developments in redox electrolytes for dye-sensitized solar cells. Energ. Environ. Sci. 2012, 5, 9394-9405.
27.Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M., Conversion of Light to Electricity by cis-X2Bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) Charge-Transfer Sensitizers (X = Cl−, Br−, I−, CN−, and SCN−) on Nanocrystalline TiO2 Electrodes. J. Am. Chem. Soc. 1993, 115, 6382-6390.
28.Nazeeruddin, M. K.; Péchy, P.; Grätzel, M., Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex. Chem. Commun. 1997, 1, 1705-1706.
29.Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C.-H.; Grätzel, M., Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorg. Chem. 1999, 38, 6298-6305.
30.Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 2005, 127, 16835-16847.
31.Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Grätzel, M., Erratum: A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2003, 2, 498-498.
32.Chen, C.-Y.; Wu, S.-J.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C., A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells. Angew. Chem. Int. Edit. 2006, 45, 5822-5825.
33.Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Jing, X.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M., Enhance the Optical Absorptivity of Nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2008, 130, 10720-10728.
34.Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G.; Zakeeruddin, S. M.; Grätzel, M., Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano 2009, 3, 3103-3109.
35.Anderson, H. L., Building molecular wires from the colours of life: conjugated porphyrin oligomers. Chem. Commun. 1999, 2323-2330.
36.Kalyanasundaram, K.; Vlachopoulos, N.; Krishnan, V.; Monnier, A.; Graetzel, M., Sensitization of titanium dioxide in the visible light region using zinc porphyrins. J. Phys. Chem. 1987, 91, 2342-2347.
37.Kay, A.; Graetzel, M., Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 1993, 97, 6272-6277.
38.Kay, A.; Humphry-Baker, R.; Graetzel, M., Artificial Photosynthesis. 2. Investigations on the Mechanism of Photosensitization of Nanocrystalline TiO2 Solar Cells by Chlorophyll Derivatives. J. Phys. Chem. 1994, 98, 952-959.
39.Lee, C.-W.; Lu, H.-P.; Lan, C.-M.; Huang, Y.-L.; Liang, Y.-R.; Yen, W.-N.; Liu, Y.-C.; Lin, Y.-S.; Diau, E. W.-G.; Yeh, C.-Y., Novel Zinc Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Synthesis and Spectral, Electrochemical, and Photovoltaic Properties. Chem. Eur. J. 2009, 15, 1403-1412.
40.Lin, C.-Y.; Lo, C.-F.; Luo, L.; Lu, H.-P.; Hung, C.-S.; Diau, E. W.-G., Design and Characterization of Novel Porphyrins with Oligo(phenylethylnyl) Links of Varied Length for Dye-Sensitized Solar Cells: Synthesis and Optical, Electrochemical, and Photovoltaic Investigation. J. Phys. Chem. C 2009, 113, 755-764.
41.Chang, Y.-C.; Wang, C.-L.; Pan, T.-Y.; Hong, S.-H.; Lan, C.-M.; Kuo, H.-H.; Lo, C.-F.; Hsu, H.-Y.; Lin, C.-Y.; Diau, E. W.-G., A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chem. Commun. 2011, 47, 8910.
42.Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629.
43.Wang, C.-L.; Lan, C.-M.; Hong, S.-H.; Wang, Y.-F.; Pan, T.-Y.; Chang, C.-W.; Kuo, H.-H.; Kuo, M.-Y.; Diau, E. W.-G.; Lin, C.-Y., Enveloping porphyrins for efficient dye-sensitized solar cells. Energ. Environ. Sci. 2012, 5, 6933.
44.Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242-247.
45.Wang, C.-L.; Zhang, M.; Hsiao, Y.-H.; Tseng, C.-K.; Liu, C.-L.; Xu, M.; Wang, P.; Lin, C.-Y., Porphyrins bearing a consolidated anthryl donor with dual functions for efficient dye-sensitized solar cells. Energ. Environ. Sci. 2016, 9, 200-206.
46.Kang, S. H.; Jeong, M. J.; Eom, Y. K.; Choi, I. T.; Kwon, S. M.; Yoo, Y.; Kim, J.; Kwon, J.; Park, J. H.; Kim, H. K., Porphyrin Sensitizers with Donor Structural Engineering for Superior Performance Dye-Sensitized Solar Cells and Tandem Solar Cells for Water Splitting Applications. Advanced Energy Materials 2017, 7.
47.Eom, Y. K.; Kang, S. H.; Choi, I. T.; Yoo, Y.; Kim, J.; Kim, H. K., Significant light absorption enhancement by a single heterocyclic unit change in the π-bridge moiety from thieno[3,2-b]benzothiophene to thieno[3,2-b]indole for high performance dye-sensitized and tandem solar cells. J. Mater. Chem. A 2017, 5, 2297-2308.
48.Eu, S.; Hayashi, S.; Umeyama, T.; Oguro, A.; Kawasaki, M.; Kadota, N.; Matano, Y.; Imahori, H., Effects of 5-Membered Heteroaromatic Spacers on Structures of Porphyrin Films and Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells. J. Phys. Chem. C 2007, 111, 3528-3537.
49.Mahmood, A., Triphenylamine based dyes for dye sensitized solar cells: A review. Sol. Energy 2016, 123, 127-144.
50.Koumura, N.; Wang, Z. S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K., Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J. Am. Chem. Soc. 2006, 128, 14256-14257.
51.Yao, Z.; Wu, H.; Li, Y.; Wang, J.; Zhang, J.; Zhang, M.; Guo, Y.; Wang, P., Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity. Energ. Environ. Sci. 2015, 8, 3192-3197.
52.Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-i.; Hanaya, M., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894-15897.
53.Zhang, L.; Yang, X.; Wang, W.; Gurzadyan, G. G.; Li, J.; Li, X.; An, J.; Yu, Z.; Wang, H.; Cai, B.; Hagfeldt, A.; Sun, L., 13.6% Efficient Organic Dye-Sensitized Solar Cells by Minimizing Energy Losses of the Excited State. ACS Energy Lett. 2019, 4, 943-951.
54.Demeter, D.; Roncali, J.; Jungsuttiwong, S.; Melchiorre, F.; Biagini, P.; Po, R., Linearly π-conjugated oligothiophenes as simple metal-free sensitizers for dye-sensitized solar cells. J. Mater. Chem. C 2015, 3, 7756-7761.
55.Zhou, N.; Prabakaran, K.; Lee, B.; Chang, S. H.; Harutyunyan, B.; Guo, P.; Butler, M. R.; Timalsina, A.; Bedzyk, M. J.; Ratner, M. A.; Vegiraju, S.; Yau, S.; Wu, C. G.; Chang, R. P.; Facchetti, A.; Chen, M. C.; Marks, T. J., Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells. J. Am. Chem. Soc. 2015, 137, 4414-23.
56.Sayama, K.; Tsukagoshi, S.; Mori, T.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H., Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Sol. Energ. Mat. Sol. C. 2003, 80, 47-71.
57.Kasha, M., Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates. Radiat. Res. 1963, 20, 55.
58.https://www.ossila.com/pages/solar-cells-theory
59.Li, L. L.; Chang, Y. C.; Wu, H. P.; Diau, E. W. G., Characterisation of electron transport and charge recombination using temporally resolved and frequency-domain techniques for dye-sensitised solar cells. Int. Rev. Phys. Chem. 2012, 31, 420-467.
60.Grätzel, M., Photoelectrochemical cells. In Nature, 2001, 414, 338-344.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊