跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮勝賢
研究生(外文):Feng, Sheng-Hsien
論文名稱:急性有氧與阻力健身運動對早產孩童執行功能之影響
論文名稱(外文):The Effects of Acute Aerobic and Resistance Exercise on Executive Function in Children with Preterm Birth
指導教授:鄭世忠鄭世忠引用關係
指導教授(外文):Cheng, Shih-Chung
口試委員:邱炳坤張少熙洪聰敏張育愷
口試委員(外文):Chiu, Ping-kunChang, Shao-HsiHung, Tsung-MinChang, Yu-Kai
口試日期:2018-12-19
學位類別:博士
校院名稱:國立體育大學
系所名稱:競技與教練科學研究所
學門:民生學門
學類:競技運動學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:62
中文關鍵詞:認知功能抑制計畫運動處方
外文關鍵詞:cognitive functioninhibitionplanningexercise prescription
相關次數:
  • 被引用被引用:0
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
緒論:諸多研究已指出早產孩童對執行功能有著負面影響。值得注意的是,近期研究已發現急性健身運動可提升一般孩童執行功能表現;不僅如此,該正面效益甚至可延伸至特殊族群。然而,過去研究多聚焦於有氧健身運動,而對於阻力健身運動型態則較少探究。因此,為建立改善早產族群認知功能之健身運動處方,本文目的旨在比較不同急性健身運動型態在早產孩童執行功能之差異。方法:本研究共招募30位早產孩童,以平衡次序方式進行有氧健身運動、阻力健身運動,及控制等情境。於每種情境後進行倫敦塔作業 (Tower of London test, TOL) 與Stroop作業 (Stroop test) 進行施測,該兩種作業分別所屬計畫 (planning) 與抑制 (inhibition) 相關執行功能。結果:有氧或阻力健身運動型態皆能增進早產孩童TOL作業之總移動次數、總執行時間,及總問題解決時間。另外,兩種健身運動型態亦可降低早產孩童的Stroop作業之所有情境(同質、中性、及異質)的反應時間。結論:該結果意味著急性健身運動對早產孩童之抑制與計畫相關執行功能皆有其正面效益。本文為首篇探討不同急性健身運動型態對早產孩童執行功能之影響,研究結果提供改善早產孩童執行功能之最適健身運動型態,期望研究結果可作為日後實務方案之參考。

Introduction: Several studies have evidenced the negative impact on cognitions in children with preterm birth. Notably, current studies have found acute exercise can facilitate cognitions, especially executive function; Also, the positive effects extend to special population. However, previous studies mostly focused on aerobic exercise, but resistance exercise have less discussed. For conducting exercise prescription of improving cognition, the present study further compared the effect of different exercise modes on executive function in children with preterm birth. Method: the research recruited 30 child participants with preterm birth and they separately performed three experimental conditions (aerobic exercise, resistance exercise, and control) with counterbalanced design. After each condition, two executive function tasks, including Tower of London task [TOL] and Stroop task, were examined. Results: The results showed that children in aerobic and resistance exercise condition facilitate TOL performance, such as lesser total move score, shorter total executive time, and shorter problem solving time, compared to control condition. Similarly, two exercise conditions also showed shorter reaction time in Stroop task. Conclusion: we concluded that acute exercise has positive effect on inhibitory and planning aspect of executive function. There are no studies to examine directly on the impact of acute exercise on cognition in children with preterm birth. Thus, the results of present study will help future scholars to obtain a more complete research profile. In addition, the finding provides the optimal exercise prescription for improving the executive function in children with preterm birth, therefore, it is expected that the results can be used as a reference for future practical implication.
目錄


簽名頁…………………………………………………………………………….……I
致謝…………………………………………………………………………………....II
目錄………………………..………………………………………………………….IV
表目錄………………………………..………………………………………….........VI
中文摘要…………………………………………...………………………...….......VII
英文摘要………………………………………………...…………………...…......VIII
第壹章、緒論………………………………...……………………..........................1
第貳章、文獻探討…………………………………………...................................4
第一節、早產兒盛行率............................................................................. ...............4
第二節、早產兒與其衍生的生理與心理發展問題.................................................4
第三節、早產兒與認知功能之關聯…………….....................................................5
第四節、早產兒與大腦之關聯…………….............................................................6
第五節、執行功能與學業表現之關聯…………….................................................7
第六節、急性健身運動與執行功能之相關研究.....................................................8
第七節、急性健身運動與執行功能之相關研究:特殊族群...............................11
第八節、不同健身運動型態與認知功能之相關研究...........................................12
第九節、研究目的……………...............................................................................13
第十節、研究假設……………...............................................................................13
第十一節、研究重要性………...............................................................................14
第參章、方法………………………………………...............................................15
第一節、研究對象…………………………………...............................................15
第二節、研究工具與問卷…………………………...............................................15
第三節、身體適能評估…………………………...................................................17
第四節、執行功能作業…………………………...................................................18
第五節、情境介入流程與強度監控…………………………...............................19
第六節、實驗流程…………………………...........................................................20
第七節、資料處理…………………………...........................................................21
第肆章、結果………………………………………...............................................23
第一節、參與者基本資料…………………………...............................................23
第二節、參與者之身體適能數據…………………...............................................25
第三節、心跳率與RPE之數據………………….................................................27
第四節、TOL作業表現…………………………..................................................31
第五節、數值Stroop作業表現…………………..................................................34
第伍章、討論…………………...............................................................................33
第一節、TOL作業…………………......................................................................34
第二節、Stroop作業…………………...................................................................35
第三節、不同健身運動型態之比較…...................................................................38
第四節、急性健身運動對特殊族群的認知功能之影響.......................................39
第五節、急性健身運動與增進執行功能之相關機制...........................................40
第六節、研究限制...................................................................................................42
第七節、結論...........................................................................................................42
第陸章、參考文獻.................................................................................................44

表目錄

表一 參與者基本資料(平均數與標準差).............................................................24
表二 參與者之身體適能數據(平均數與標準差)...................................................26
表三 心跳率與RPE之數據(平均數與標準差).....................................................28
表四 TOL作業表現(平均數與標準差)................................................................30
表五 數值Stroop作業表現........................................................................................32


馮勝賢、陳豐慈、陳代聖、粘瑞狄、張育愷 (2018)。中等強度急性健身運動對早產兒計畫執行功能之影響,大專體育學刊,20卷,1期,16-28頁。
劉人豪、詹貴惠、張育愷 (2015)。健身運動對肥胖者認知功能之影響。大專體育,134期,74-84頁。
國民健康署 (2013)。出生通報統計資料。取自http://www.hpa.gov.tw/BHPNet/Web/HealthTopic/Topic.aspx?id=201109200006
謝漱石、闕廷宇、洪聰敏 (2017)。急性阻力運動與認知功能:文獻回顧。臺灣運動心理學報,17期,1卷,111-129頁。
張晏山、陳豐慈、宋岱芬、張育愷 (2017)。急性健身運動與執行功能之劑量反應關係。大專體育,142期,35-44頁。
張瑛珍、吳明鋗、楊長興、詹偉添 (2017)。台灣地區極低出生體重早產兒兩歲追蹤結果對於五歲發展預後之預測。台灣公共衛生雜誌,36期,1卷,32-43頁。
張騰方、郭乃文、倪子洛、黃品嘉、黃朝慶 (2015)。早期發展正常之極低出生體重早產兒執行功能與學業成就關聯研究。臨床心理學刊,9期,2卷, 47-48頁。
陳豐慈、王俊智、齊璘、張育愷 (2013)。急性健身運動對計畫執行相關功能在立即與延續時間之影響:前導研究. 大專體育學刊,15期,1卷,29-39頁。
陳豐慈、王俊智、祝堅、張育愷 (2013)。急性有氧健身運動對計畫相關執行功能之影響。體育學報,46期,1卷,45-54頁。
宋岱芬、張育愷、林季燕 (2015)。肥胖與體適能對孩童認知功能之影響。中華體育季刊,29期,3卷,229-236頁。
楊文中、陳豐慈、吳聰義、陳麗華、張育愷 (2016。健身運動對記憶相關認知功能之影響。臺灣運動心理學報,16期,2卷,57-83頁。
王俊智、宋岱芬、祝堅恆、張育愷 (2016)。健身運動與認知功能:大腦神經滋養因子調節機制之探討。應用心理研究,64期,95-134頁。
王駿濠、蔡佳良 (2011)。急性運動對認知表現的影響。大專體育,112期,31-39頁。
Aarnoudse-Moens, C. S., Duivenvoorden, H. J., Weisglas-Kuperus, N., Van Goudoever, J. B., & Oosterlaan, J. (2012). The profile of executive function in very preterm children at 4 to 12 years. Developmental Medicine and Child Neurology, 54(3), 247-253. doi:10.1111/j.1469-8749.2011.04150.x
Aarnoudse-Moens, C. S., Smidts, D. P., Oosterlaan, J., Duivenvoorden, H. J., & Weisglas-Kuperus, N. (2009). Executive function in very preterm children at early school age. Journal of Abnormal Child Psychology, 37(7), 981-993. doi:10.1007/s10802-009-9327-z
Abe, T., Fujii, K., Hyodo, K., Kitano, N., & Okura, T. (2018). Effects of acute exercise in the sitting position on executive function evaluated by the Stroop task in healthy older adults. Journal of Physical Therapy Science, 30(4), 609-613. doi:10.1589/jpts.30.609
Abernethy, L. J., Palaniappan, M., & Cooke, R. W. (2002). Quantitative magnetic resonance imaging of the brain in survivors of very low birth weight. Archives of Disease in Childhood, 87(4), 279-283.
ACSM. (2013). ACSM's guidelines for exercise testing and prescription (9th ed.). New York: Lippincott Williams and Wilkins.
Alduncin, N., Huffman, L. C., Feldman, H. M., & Loe, I. M. (2014). Executive function is associated with social competence in preschool-aged children born preterm or full term. Early Human Development, 90(6), 299-306. doi:10.1016/j.earlhumdev.2014.02.011
Allin, M. P., Kontis, D., Walshe, M., Wyatt, J., Barker, G. J., Kanaan, R. A., . . . Nosarti, C. (2011). White matter and cognition in adults who were born preterm. PLoS One, 6(10), e24525.
Altemeier, L., Jones, J., Abbott, R. D., & Berninger, V. W. (2006). Executive functions in becoming writing readers and reading writers: Note taking and report writing in third and fifth graders. Developmental Neuropsychology, 29(1), 161-173.
Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, 16(1), 17-42.
Anderson, P. J., & Doyle, L. W. (2004). Executive functioning in school-aged children who were born very preterm or with extremely low birth weight in the 1990s. Pediatrics, 114(1), 50-57.
Arent, S. M., & Landers, D. M. (2003). Arousal, anxiety, and performance: A reexamination of the inverted-U hypothesis. Research Quarterly for Exercise and Sport, 74(4), 436-444.
Assel, M. A., Landry, S. H., Swank, P. R., Smith, K. E., & Steelman, L. M. (2003). Precursors to mathematical skills: Examining the roles of visual-spatial skills, executive processes, and parenting factors. Applied Developmental Science, 7(1), 27-38.
Barella, L. A., Etnier, J. L., & Chang, Y. K. (2010). The immediate and delayed effects of an acute bout of exercise on cognitive performance of healthy older adults. Journal of Aging and Physical Activity, 18(1), 87-98.
Basso, J. C., Shang, A., Elman, M., Karmouta, R., & Suzuki, W. A. (2015). Acute Exercise Improves Prefrontal Cortex but not Hippocampal Function in Healthy Adults. Journal of the International Neuropsychological Society : JINS, 21(10), 791-801. doi:10.1017/s135561771500106x
Bayless, S., & Stevenson, J. (2007). Executive functions in school-age children born very prematurely. Early Human Development, 83(4), 247-254. doi:10.1016/j.earlhumdev.2006.05.021
Beck, S., Wojdyla, D., Say, L., Betran, A. P., Merialdi, M., Requejo, J. H., . . . Van Look, P. F. (2010). The worldwide incidence of preterm birth: A systematic review of maternal mortality and morbidity. Bulletin of the World Health Organization, 88(1), 31-38. doi:10.2471/blt.08.062554
Belizan, J. M. (2006). Risks for low intellectual performance related to being born small for gestational age are modified by gestational age. Pediatrics, 118(1), 433-434. doi:10.1542/peds.2006-0697
Berg, W. K., & Byrd, D. (2002). The Tower of London spatial problem-solving task: Enhancing clinical and research implementation. Journal of Clinical and Experimental Neuropsychology, 24(5), 586-604.
Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M., & Anand, K. S. (2002). Cognitive and behavioral outcomes of school-aged children who were born preterm: A meta-analysis. JAMA, 288(6), 728-737.
Borg, G. A. (1998). Borg's perceived exertion and pain scales. Champaign, IL: Human Kinetics.
Bracewell, M., & Marlow, N. (2002). Patterns of motor disability in very preterm children. Mental retardation and developmental disabilities research reviews, 8(4), 241-248.
Brocki, K. C., & Bohlin, G. (2004). Executive functions in children aged 6 to 13: A dimensional and developmental study. Developmental Neuropsychology, 26(2), 571-593.
Brosnan, M., Demetre, J., Hamill, S., Robson, K., Shepherd, H., & Cody, G. (2002). Executive functioning in adults and children with developmental dyslexia. Neuropsychologia, 40(12), 2144-2155.
Brush, C. J., Olson, R. L., Ehmann, P. J., Osovsky, S., & Alderman, B. L. (2016). Dose-response and time course effects of acute resistance exercise on executive function. Journal of Sport and Exercise Psychology, 38(4), 396-408. doi:10.1123/jsep.2016-0027
Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children's mathematics ability: inhibition, switching, and working memory. Developmental Neuropsychology, 19(3), 273-293. doi:10.1207/S15326942DN1903_3
Burnett, A. C., Scratch, S. E., & Anderson, P. J. (2013). Executive function outcome in preterm adolescents. Early Human Development, 89(4), 215-220. doi:10.1016/j.earlhumdev.2013.01.013
Chang, Y. K., Alderman, B. L., Chu, C. H., Wang, C. C., Song, T. F., & Chen, F. T. (2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology, 54(2), 289-300. doi:10.1111/psyp.12784
Chang, Y. K., Chi, L., Etnier, J. L., Wang, C. C., Chu, C. H., & Zhou, C. L. (2014). Effect of acute aerobic exercise on cognitive performance: Role of cardiovascular fitness. Psychology of Sport and Exercise, 15(5), 464-470. doi:10.1016/j.psychsport.2014.04.007
Chang, Y. K., Chu, C. H., Wang, C. C., Song, T. F., & Wei, G. X. (2015). Effect of acute exercise and cardiovascular fitness on cognitive function: an event-related cortical desynchronization study. Psychophysiology, 52(3), 342-351. doi:10.1111/psyp.12364
Chang, Y. K., Chu, C. H., Wang, C. C., Wang, Y. C., Song, T. F., Tsai, C. L., & Etnier, J. L. (2014). Dose-response Relationship between Exercise Duration and Cognition. Medicine and Science in Sports and Exercise. doi:10.1249/MSS.0000000000000383
Chang, Y. K., Chu, I. H., Chen, F. T., & Wang, C. C. (2011). Dose-response effect of acute resistance exercise on Tower of London in middle-aged adults. Journal of Sport and Exercise Psychology, 33(6), 866-883.
Chang, Y. K., & Etnier, J. L. (2009). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. Journal of Sport and Exercise Psychology, 31(5), 640-656.
Chang, Y. K., Ku, P. W., Tomporowski, P. D., Chen, F. T., & Huang, C. C. (2012). The effects of acute resistance exercise on late-middle-aged adults' goal planning. Medicine and Science in Sports and Exercise, 44(9), 1773-1779. doi:10.1249/MSS.0b013e3182574e0b
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101. doi:10.1016/j.brainres.2012.02.068
Chang, Y. K., Liu, S., Yu, H. H., & Lee, Y. H. (2012). Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder. Archives of Clinical Neuropsychology, 27, 225-237. doi:10.1093/arclin/acr094
Chang, Y. K., Pan, C. Y., Chen, F. T., Tsai, C. L., & Huang, C. C. (2012). Effect of resistance exercise training on cognitive function in healthy older adults: A review. Journal of Aging and Physical Activity, 20, 497-516.
Chang, Y. K., Tsai, C. L., Huang, C. C., Wang, C. C., & Chu, I. H. (2014). Effects of acute resistance exercise on cognition in late middle-aged adults: General or specific cognitive improvement? Journal of Science and Medicine in Sport, 17(1), 51-55. doi:10.1016/j.jsams.2013.02.007
Chang, Y. K., Tsai, C. L., Hung, T. M., So, E. C., Chen, F. T., & Etnier, J. L. (2011). Effects of acute exercise on executive function: A study with a Tower of London Task. Journal of Sport and Exercise Psychology, 33(6), 847-865.
Chen, A. G., Yan, J., Yin, H. C., Pan, C. Y., & Chang, Y. K. (2014). Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychology of Sport and Exercise, 15(6), 627-636.
Cheong, J. L., Anderson, P. J., Roberts, G., Burnett, A. C., Lee, K. J., Thompson, D. K., . . . Seal, M. L. (2013). Contribution of brain size to IQ and educational underperformance in extremely preterm adolescents. PLoS One, 8(10), e77475.
Chu, C. H., Kramer, A. F., Song, T. F., Wu, C. H., Hung, T. M., & Chang, Y. K. (2017). Acute Exercise and Neurocognitive Development in Preadolescents and Young Adults: An ERP Study. Neural Plasticity, 2017, 2631909. doi:10.1155/2017/2631909
Colcombe, S. J., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychology Science, 14(2), 125-130.
Cordova, C., Silva, V. C., Moraes, C. F., Simoes, H. G., & Nobrega, O. T. (2009). Acute exercise performed close to the anaerobic threshold improves cognitive performance in elderly females. Brazilian of Jornal Medicine Biological Research, 42(5), 458-464.
de Haan, M., Bauer, P. J., Georgieff, M. K., & Nelson, C. A. (2000). Explicit memory in low-risk infants aged 19 months born between 27 and 42 weeks of gestation. Developmental Medicine and Child Neurology, 42(5), 304-312.
Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Developmental Cognitive Neuroscience, 7, 53-64. doi:10.1016/j.dcn.2013.11.001
Ekeus, C., Lindstrom, K., Lindblad, F., Rasmussen, F., & Hjern, A. (2010). Preterm birth, social disadvantage, and cognitive competence in Swedish 18- to 19-year-old men. Pediatrics, 125(1), e67-e73. doi:10.1542/peds.2008-3329
Etnier, J. L., & Chang, Y. K. (2009). The effect of physical activity on executive function: A brief commentary on definitions, measurement issues, and the current state of the literature. Journal of Sport and Exercise Psychology, 31, 469-483.
Ferris, L. T., Williams, J. S., & Shen, C. L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and Science in Sports and Exercise, 39(4), 728-734. doi:10.1249/mss.0b013e31802f04c7
Frye, R. E., Landry, S. H., Swank, P. R., & Smith, K. E. (2009). Executive dysfunction in poor readers born prematurely at high risk. Developmental Neuropsychology, 34(3), 254-271. doi:10.1080/87565640902805727
Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., . . . Swain, D. P. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334-1359. doi:10.1249/MSS.0b013e318213fefb
Gerst, E. H., Cirino, P. T., Fletcher, J. M., & Yoshida, H. (2015). Cognitive and behavioral rating measures of executive function as predictors of academic outcomes in children. Child Neuropsychology, 1-27. doi:10.1080/09297049.2015.1120860
Giménez, M., Junqué, C., Narberhaus, A., Botet, F., Bargalló, N., & Mercader, J. M. (2006). Correlations of thalamic reductions with verbal fluency impairment in those born prematurely. Neuroreport, 17(5), 463-466.
Golding, L. A. (2000). YMCA fitness testing and assessment manual.
Griffin, E. W., Mullally, S., Foley, C., Warmington, S. A., O'Mara, S. M., & Kelly, A. M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology Behavior, 104(5), 934-941. doi:10.1016/j.physbeh.2011.06.005
Harveson, A. T., Hannon, J. C., Brusseau, T. A., Podlog, L., Papadopoulos, C., Durrant, L. H., . . . Kang, K. D. (2016). Acute effects of 30 Minutes resistance and aerobic exercise on cognition in a high school sample. Research Quarterly for Exercise and Sport, 87(2), 214-220. doi:10.1080/02701367.2016.1146943
Hillman, C. H., Motl, R. W., Pontifex, M. B., Posthuma, D., Stubbe, J. H., Boomsma, D. I., & de Geus, E. J. C. (2006). Physical activity and cognitive function in cross-section of younger and older community-dwelling individuals. Health Psychology, 25(6), 678-687. doi:10.1037/0278-6133.25.6.678
Hillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159, 1044-1054. doi:10.1016/j.neuroscience.2009.01.057
Hung, T. M., Tsai, C. L., Chen, F. T., Wang, C. C., & Chang, Y. K. (2013). The immediate and sustained effects of acute exercise on planning aspect of executive function. Psychology of Sport and Exercise, 14(5), 728-736. doi:10.1016/j.psychsport.2013.05.004
Inder, T. E., Warfield, S. K., Wang, H., Hüppi, P. S., & Volpe, J. J. (2005). Abnormal cerebral structure is present at term in premature infants. Pediatrics, 115(2), 286-294.
Jager, K., Schmidt, M., Conzelmann, A., & Roebers, C. M. (2014). Cognitive and physiological effects of an acute physical activity intervention in elementary school children. Frontiers in Psychology, 5, 1473. doi:10.3389/fpsyg.2014.01473
Kalpakidou, A. K., Allin, M. P., Walshe, M., Giampietro, V., McGuire, P. K., Rifkin, L., . . . Nosarti, C. (2014). Functional neuroanatomy of executive function after neonatal brain injury in adults who were born very preterm. PLoS One, 9(12), e113975. doi:10.1371/journal.pone.0113975
Kraemer, W. J., Ratamess, N. A., & French, D. N. (2002). Resistance training for health and performance. Current Sports Medicine Reports, 1(3), 165-171.
Kramer, A. F., & Colcombe, S. (2018). Fitness effects on the cognitive function of older adults: A meta-analytic study-revisited. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 13(2), 213-217. doi:10.1177/1745691617707316
Labelle, V., Bosquet, L., Mekary, S., & Bherer, L. (2013). Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level. Brain Cognition, 81(1), 10-17. doi:10.1016/j.bandc.2012.10.001
Lambourne, K., Audiffren, M., & Tomporowski, P. D. (2010). Effects of acute exercise on sensory and executive processing tasks. Medicine and Science in Sports and Exercise, 42(7), 1396-1402. doi:10.1249/MSS.0b013e3181cbee11
Lambourne, K., & Tomporowski, P. D. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12-24. doi:10.1016/j.brainres.2010.03.091
Lambrick, D., Stoner, L., Grigg, R., & Faulkner, J. (2016). Effects of continuous and intermittent exercise on executive function in children aged 8-10 years. Psychophysiology, 53(9), 1335-1342. doi:10.1111/psyp.12688
Latal, B. (2009). Prediction of neurodevelopmental outcome after preterm birth. Pediatr Neurol, 40(6), 413-419. doi:10.1016/j.pediatrneurol.2009.01.008
Lawn, J. E., Blencowe, H., Oza, S., You, D., Lee, A. C., Waiswa, P., . . . Cousens, S. N. (2014). Every Newborn: Progress, priorities, and potential beyond survival. Lancet, 384(9938), 189-205. doi:10.1016/s0140-6736(14)60496-7
Lezak, M. D., Howieson, D. W., & Loring, D. W. (2004). Neuropsychological assessment (4th ed.): New York: Oxford University Press.
Li, L., Men, W. W., Chang, Y. K., Fan, M. X., Li, L., & Wei, G. X. (2014). Acute aerobic exercise increases cortical activity during working memory: A functional MRI study in female college students. PLoS One, 9(6), e99222. doi:10.1371/journal.pone.0099222
Luciana, M., Lindeke, L., Georgieff, M., Mills, M., & Nelson, C. A. (1999). Neurobehavioral evidence for working-memory deficits in school-aged children with histories of prematurity. Developmental Medicine and Child Neurology, 41(8), 521-533.
MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychological bulletin, 109(2), 163.
Maltais, D. B., Gane, C., Dufour, S. K., Wyss, D., Bouyer, L. J., McFadyen, B. J., . . . Voisen, J. I. (2016). Acute physical exercise affects cognitive functioning in children with cerebral palsy. Pediatric Exercise Science, 28(2), 304-311. doi:10.1123/pes.2015-0110
Mazzocco, M. M., & Kover, S. T. (2007). A longitudinal assessment of executive function skills and their association with math performance. Child Neuropsychology, 13(1), 18-45.
McMorris, T., Sproule, J., Turner, A., & Hale, B. J. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical comparison of effects. Physiology and Behavior, 102(3-4), 421-428. doi:10.1016/j.physbeh.2010.12.007
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: a latent variable analysis. Cogn Psychol, 41(1), 49-100. doi:10.1006/cogp.1999.0734
Mulder, H., Pitchford, N. J., Hagger, M. S., & Marlow, N. (2009). Development of executive function and attention in preterm children: A systematic review. Developmental Neuropsychology, 34(4), 393-421.
Nagy, Z., Ashburner, J., Andersson, J., Jbabdi, S., Draganski, B., Skare, S., . . . Lagercrantz, H. (2009). Structural correlates of preterm birth in the adolescent brain. Pediatrics, 124(5), e964-e972.
Narberhaus, A., Segarra, D., Caldú, X., Giménez, M., Pueyo, R., Botet, F., & Junqué, C. (2008). Corpus callosum and prefrontal functions in adolescents with history of very preterm birth. Neuropsychologia, 46(1), 111-116.
Niederer, D., Engeroff, T., Wallner, F., Plaumann, U., & Banzer, W. (2018). The Acute Physical and Cognitive Effects of a Classical Workplace Physical Activity Program Versus a Motor-Cognitive Coordination Workplace Program: A Randomized Crossover Trial. Journal of Occupational and Environmental Medicine, 60(10), 936-942. doi:10.1097/jom.0000000000001378
Nosarti, C., Al‐Asady, M. H., Frangou, S., Stewart, A. L., Rifkin, L., & Murray, R. M. (2002). Adolescents who were born very preterm have decreased brain volumes. Brain, 125(7), 1616-1623.
Nosarti, C., Giouroukou, E., Healy, E., Rifkin, L., Walshe, M., Reichenberg, A., . . . Murray, R. M. (2008). Grey and white matter distribution in very preterm adolescents mediates neurodevelopmental outcome. Brain, 131(1), 205-217.
Peterson, B. S., Vohr, B., Staib, L. H., Cannistraci, C. J., Dolberg, A., Schneider, K. C., . . . Anderson, A. W. (2000). Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA, 284(15), 1939-1947.
Pontifex, M. B., Hillman, C. H., Fernhall, B. O., Thompson, K. M., & Valentini, T. A. (2009). The effect of acute aerobic and resistance exercise on working memory. Medicine and Science in Sports and Exercise, 41(4), 927-934.
Pontifex, M. B., Saliba, B. J., Raine, L. B., Picchietti, D. L., & Hillman, C. H. (2013). Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder. The Journal of Pediatrics, 162(3), 543-551. doi:10.1016/j.jpeds.2012.08.036
Romine, C. B., & Reynolds, C. R. (2005). A model of the development of frontal lobe functioning: findings from a meta-analysis. Appl Neuropsychol, 12(4), 190-201. doi:10.1207/s15324826an1204_2
Rucklidge, J. J., & Tannock, R. (2002). Neuropsychological profiles of adolescents with ADHD: Effects of reading difficulties and gender. Journal of Child Psychology and Psychiatry, 43(8), 988-1003.
Sibley, B. A., Etnier, J. L., & Le Masurier, G. C. (2006). Effects of an acute bout of exercise on cognitive aspects of Stroop performance. Journal of Sport and Exercise Psychology, 28(3), 285.
Spiker, D., Kraemer, H. C., Constantine, N. A., & Bryant, D. (1992). Reliability and validity of behavior problem checklists as measures of stable traits in low birth weight, premature preschoolers. Child Development, 63(6), 1481-1496.
Stein, M., Auerswald, M., & Ebersbach, M. (2017). Relationships between motor and executive functions and the effect of an acute coordinative intervention on executive functions in kindergartners. Frontiers in Psychology, 8, 859. doi:10.3389/fpsyg.2017.00859
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of experimental psychology, 18(6), 643.
Stroth, S., Kubesch, S., Dieterle, K., Ruchsow, M., Heim, R., & Kiefer, M. (2009). Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Research, 1269, 114-124. doi:10.1016/j.brainres.2009.02.073
Strunk, T., Inder, T., Wang, X., Burgner, D., Mallard, C., & Levy, O. (2014). Infection-induced inflammation and cerebral injury in preterm infants. The Lancet. Infectious Diseases, 14(8), 751-762. doi:10.1016/s1473-3099(14)70710-8
Stuss, D. T., & Alexander, M. P. (2000). Executive functions and the frontal lobes: A conceptual view. Psychological Research, 63(3-4), 289-298.
Taylor, H. G., Filipek, P. A., Juranek, J., Bangert, B., Minich, N., & Hack, M. (2011). Brain volumes in adolescents with very low birth weight: Effects on brain structure and associations with neuropsychological outcomes. Developmental Neuropsychology, 36(1), 96-117.
Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta psychologica, 112(3), 297-324.
Tsai, C. L., Wang, C. H., Pan, C. Y., Chen, F. C., Huang, T. H., & Chou, F. Y. (2014). Executive function and endocrinological responses to acute resistance exercise. Frontiers Research Foundation, 8, 262. doi:10.3389/fnbeh.2014.00262
van der Schoot, M., Licht, R., Horsley, T. M., & Sergeant, J. A. (2000). Inhibitory deficits in reading disability depend on subtype: Guessers but not spellers. Child Neuropsychology, 6(4), 297-312.
Volpe, J. J. (2009). Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. The Lancet. Neurology, 8(1), 110-124. doi:10.1016/s1474-4422(08)70294-1
Wade, M. J., Lefferts, W. K., & Heffernan, K. S. (2016). The effects of acute resistance exercise on vascular and cognitive function. Medicine and Science in Sports and Exercise, 48(5 Suppl 1), 364. doi:10.1249/01.mss.0000486102.21783.c9
Wang, C. C., Chu, C. H., Chu, I. H., Chan, K. H., & Chang, Y. K. (2013). Executive function during acute exercise: the role of exercise intensity. Journal of Sport and Exercise Psychology, 35(4), 358-367.
Wang, C. C., Shih, C. H., Pesce, C., Song, T. F., Hung, T. M., & Chang, Y. K. (2015). Failure to identify an acute exercise effect on executive function assessed by the Wisconsin Card Sorting Test. Journal of Sport and Health Science, 4(1), 64-72.
Weng, T. B., Pierce, G. L., Darling, W. G., & Voss, M. W. (2015). Differential effects of acute exercise on distinct aspects of executive function. Medicine and Science in Sports and Exercise, 47(7), 1460-1469.
World Health Organization. (2016). Preterm birth. Retrieved from http://www.who.int/mediacentre/factsheets/fs363/en/
Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., Okamoto, M., Kyutoku, Y., & Soya, H. (2010). Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage, 50(4), 1702-1710. doi:10.1016/j.neuroimage.2009.12.023
Zimmer, P., Binnebossel, S., Bloch, W., Hubner, S. T., Schenk, A., Predel, H. G., . . . Oberste, M. (2016). Exhaustive exercise alters thinking times in a Tower of London task in a time-dependent manner. Frontiers in Physiology, 7, 694. doi:10.3389/fphys.2016.00694
Zimmer, P., Stritt, C., Bloch, W., Schmidt, F. P., Hubner, S. T., Binnebossel, S., . . . Oberste, M. (2016). The effects of different aerobic exercise intensities on serum serotonin concentrations and their association with Stroop task performance: A randomized controlled trial. European Journal of Applied Physiology, 116(10), 2025-2034. doi:10.1007/s00421-016-3456-1

電子全文 電子全文(網際網路公開日期:20250611)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top