跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭采和
研究生(外文):Cheng, Daisy
論文名稱:以多晶矽奈米線場效電晶體檢測完整細菌
論文名稱(外文):Whole Bacterial Cell Detection by Polysilicon Nanowire Field Effect Transistors
指導教授:楊裕雄
指導教授(外文):Yang, Yuh-Shyong
口試委員:張憲彰詹維康林明瑜
口試委員(外文):Chang, Hsien-ChangChan, Wai-HongLin, Ming-Yu
口試日期:2018-08-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:45
中文關鍵詞:多晶矽奈米線場效電晶體完整細胞細菌檢測
外文關鍵詞:polysilicon nanowire field effect transistorwhole cellbacteria detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Chinese Abstract ii
English Abstract iii
Acknowledgements iv
Table of Contents v
List of Tables vii
List of Figures viii
Abbreviations ix
1 Introduction 1
1.1 The Importance of Bacterial Pathogen Detection 1
1.2 Traditional Methods of Bacteria Detection 1
1.3 Biosensors 2
1.4 Poly-Silicon Nanowire Field Effect Transistors 2
1.5 The Use of pSNWFETs as Whole Bacteria Sensors 4
1.6 Bacteria Samples 4
2 Material and Methods 5
2.1 Materials 5
2.2 Microfluidic System 5
2.3 Open-well System 6
2.4 Sensing System 6
2.5 pSNWFET Surface Cleansing with EKC 6
2.6 Electrical Characterization of pSNWFETs 7
2.7 Surface Modification of pSNWFETs 7
2.7.1 Oxygen Plasma Treatment 7
2.7.2 APTES modification 7
2.7.3 Glutaraldehyde modification 8
2.7.4 Antibody Immobilization 8
2.7.5 Blocking by NaBH3CN 8
2.8 Sample Preparation of Bacteria Targets 8
2.9 Testing Procedure with Microfluidic Channel System 8
2.10 Testing Procedure with Open-Well System 9
2.11 Verification of Surface Modification 10
2.11.1 Verification by SEM 10
2.11.2 Step-by-Step Id-Vg Curve Test 10
3 Results 12
3.1 The Electric Characteristics of the pSNWFET Chip 12
3.2 Lysed E. coli Sensing 12
3.3 Whole E. coli Cell Sensing 13
3.4 Whole Staphylococcus aureus Cell Sensing 13
3.5 Verification of Surface Modification by SEM 14
3.6 Step-by-Step Id-Vg Curve Test 15
4 Discussion 15
4.1 Comparison Between Microfluidic Channel System and the Open-Well System 15
4.2 The Electric Characteristics of the pSNWFET Chip 5
4.3 Comparison Between Lysed E. coli and Sensing Whole E. coli Cell Sensing 16
4.4 Whole Staphylococcus aureus Cell Sensing 16
4.5 Verification by SEM and Step-by-Step Id-Vg Curve Test 17
5 Conclusion 18
6 Reference 19

1. Roda, A., Mirasoli, M., Roda, B., Bonvicini, F., Colliva, C., Reschiglian, P. Recent Developments in Rapid Multiplexed Bioanalytical Methods for Foodborne Pathogenic Bacteria Detection. Microchimica Acta. 2012. 1-2: 7-28
2. Lim, D.V., Simpson, J.M., Kearns, E.A, Kramer, M.F. Current and Developing Technologies for Monitoring Agents of Bioterrorism and Biowarfare. Clinical Microbiology Reviews. 2005. 18(4): 583–607.
3. Pal, N., Sharma, S., Gupta, S. Sensitive and Rapid Detection of Pathogenic Bacteria in Small Volumes using Impedance Spectroscopy Technique. Biosensors and Bioelectronics. 2016. 77: 270-276
4. Zhou, H., Yang, D. T., Ivleva, N. P., Mircescu, N. E., Niessner, R., Haisch, C. SERS Detection of Bacteria in Water by in Situ Coating with Ag Nanoparticles. Analytical Chemistry. 2014. 86: 1525-1533
5. Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T., O’Kennedy, R. Advances in Biosensors for Detection of Pathogens in Food and Water. Enzyme and Microbial Technology. 2003. 32: 3–13
6. Gubala, A. J., Proll, D.F. Molecular-Beacon Multiplex Real-Time PCR Assay for Detection of Vibrio cholera. Applied and Environmental Microbiology. 2006. 72(9): 6424–6428.
7. Eissa, M. E. Distribution of Bacterial Contamination in Non-Sterile Pharmaceutical Materials and Assessment of its Risk to the Health of the Final Consumers Quantitatively. Beni-Suef University Journal of Basic and Applied Sciences. 2016. 217-230
8. Scharff, R.L., State Estimates for the Annual Cost of Foodborne Illness. Journal of Food Protection. 2015. 78(6):1064-71.
9. M. M. Aung, Y. S. Chang. 2014. Traceability in a Food Supply Chain: Safety and quality perspectives. Food Control. Vol. 39: 172-184
10. Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016. Geneva, World Health Organization. 2018
11. Bhatiasevi, A. Food Safety Key Facts. WHO News: http://www.who.int/en/news-room/fact-sheets/detail/food-safety. Last revised: Oct.31, 2017.
12. Sua, L., Jia, W.Z., Houb, C.J., Leia, Yu. Microbial biosensors: A Review. Biosensors and Bioelectronics. 2011. 26: 1788–1799
13. Ahmed, A., Rushworth, J.V., Hirst, N.A., Millner, P.A. Biosensors for Whole-Cell Bacterial Detection. Clinical Microbiology Reviews. 2014. 27 (3): 631–646
14. Gracias, K. S., McKillip, J. L. A Review of Conventional Detection and Enumeration Methods for Pathogenic Bacteria in Food. Canadian Journal of Microbiology. 2004. 11: 883-890
15. Boardman, A.K., Wong, W. S., Premasiri, W. R., Ziegler, L. D., Lee, J. C., Miljkovic, M., Klapperich, C. M., Sharon, A., Sauer-Budge, A. F. Rapid Detection of Bacteria from Blood with Surface-Enhanced Raman Spectroscopy. Analytical Chemistry. 2016. 88: 8026-8035
16. Bennett, R. W., Lancette, G.A. Staphylococcus aureus. Bacteriological Analytical Manual, 8th Edition, Revision A, 1998. Chapter 12. Last revised: 2016.
17. Feng, P., Weagant, S. D., Grant, M. A., Burkhardt, W. BAM 4: Enumeration of Escherichia coli and the Coliform Bacteria. Bacteriological Analytical Manual, 8th Edition, Revision A, 1998. Chapter 4. Last revised: 2017.
18. Feng, P., Weagant, S. D., Jinneman, K. BAM 4: Diarrheagenic Escherichia coli. Bacteriological Analytical Manual, 8th Edition, Revision A, 1998. Chapter 4. Last revised: 2017.
19. Mckillip, J. L., Drake, M. Real-Time Nucleic Acid–Based Detection Methods for Pathogenic Bacteria in Food. Journal of Food Protection. 2004. 67 (4): 823-832
20. Magliulo, M., Simoni, P., Guardigli, M., Michelini, E., Luciani, M., Lelli, R., Roda, A. A Rapid Multiplexed Chemiluminescent Immunoassay for the Detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes Pathogen Bacteria. Journal of Agricultural and Food Chemistry. 2007. 55: 4933-4939
21. D. Ivnitski, I. Abdel-Hamid, P. Atanasov, E. Wilkins. Biosensors for detection of pathogenic bacteria. Biosensors and Bioelectronics. 1999. 14 (7): 599–624
22. Lazcka, O., Del Campo, F.J, Mu˜noz, F.X. Pathogen Detection: A Perspective of Traditional Methods and Biosensors. Biosensors and Bioelectronics. 2007. 22: 1205–1217
23. Swaminathan, B., Feng, P. Rapid Detection of Food-borne Pathogenic Bacteria. Annual Reviews in Microbiology. 1994. 48: 401-26
24. Fenollar, F., Raoult, D. Molecular Diagnosis of Bloodstream Infections Caused by Non-Cultivable Bacteria. International Journal of antimicrobial Agents. 2007. 30 (1): 7-15
25. Yamamoto, Y. PCR in Diagnosis of Infection: Detection ofBacteria in Cerebrospinal Fluids. Clinical and Diagnostic Laboratory Immunology. 2002. 508-514
26. Lauri, A., Mariani, P.O. Potentials and Limitations of Molecular Diagnostics Methods in Food Safety. Genes and Nutrition. 2008. 4: 106
27. Mandal, P.K., Biswas, A.K., Choi, K. Pal. U.K. Methods for Rapid Detection of Foodborne Pathogens: An Overview. American Journal of Food Technology. 2011. 6 (2): 87-102
28. Idil, N., Hedström, M., Denizlid, A., Mattiasson, B. Whole Cell Based Microcontact Imprinted Capacitive Biosensor for the Detection of Escherichia coli. Biosensors and Bioelectronics. 2017. 87: 807-815
29. Templier, V., Roux, A., Roupioz, Y., Livache, T. Ligands for Label-Free Detection of Whole Bacteria on Biosensors: A Review. Trends in Analytical Chemistry. 2016. 79: 71-79
30. Palchetti, I., Mascini, M. Electroanalytical Biosensors and Their Potential for Food Pathogen and Toxin Detection. Analytical and Bioanalytical Chemistry. 2008. 391: 455–471
31. Scheller, F. W., Wollenberger, U., Warsinke, A., Lisdat, F. Research and Development in Biosensors. Current Opinion in Biotechnology. 2001. 12(1): 35-40
32. Dorst, B. V., Mehta, J., Bekaert, K., Rouah-Martina, E., Coen, W. D, Dubruel, P., Blust, R., Robbens, J. Recent Advances in Recognition Elements of Food and Environmental Biosensors, A Review. Biosensors and Bioelectronics. 2010. 26: 1178-1194
33. Justino, C. I. L., Freitas, A. C., Pereira, R., Duarte, A. C., Rocha Santos, T. A. P. Recent Developments in Recognition Elements for Chemical Sensors and Biosensors. Trends in Analytical Chemistry. 2015. 68: 2-17
34. Smietana, M., Bock, W. J., Mikulic, P., Ng, A., Chinnappan, R., Zourob, M. Detection of Bacteria using Bacteriophages as Recognition Elements Immobilized on Long-period Fiber Gratings. Optic Express. 2011. 19 (9): 7971-7978
35. Daprà, J., Lauridsen, H. L., Nielsen, A. T., Rozlosnik, N. Comparative Study on Aptamers as Recognition Elements for Antibiotics in a Label-Free All-Polymer Biosensor. Biosensors and Bioelectronics. 2013. 43: 315-320
36. Vo-Dinh, T., Cullum, B. 2000. Biosensors and biochips: advances in biological and medical diagnostics. Fresenius Journal of Analytical Chemistry. 366 :540–551
37. Nayak, M., Kotian A., Marathe, S., Chakravortty, D. Detection of Microorganisms using Biosensors—A Smarter Way Towards Detection Techniques. Biosensors and Bioelectronics. 2009. 25: 661-667
38. Huang, Y. W., Wu, C. S., Chuang, C. K., Pang, S. T., Pan, T. M., Yang, Y. S., Ko, F. H. Real-Time and Label-Free Detection of the Prostate-Specific Antigen in Human Serum by a Polycrystalline Silicon Nanowire Field-Effect Transistor Biosensor. Analytical Chemistry. 2013 85: 7912−7918
39. Schöning, M. J., Poghossian, A. Recent Advances in Biologically Sensitive Field-Effect Transistors (BioFETs). Analyst. 2002. 127: 1137-1151
40. Poghossian, A., Schöning, M. J. Label-Free Sensing of Biomolecules with Field-EffectDevices for Clinical Applications. Electroanalysis. 2014. 26: 1197-1213
41. Lee, C.S., Kim, S. K., Kim, M. Ion-Sensitive Field-Effect Transistor for Biological Sensing. Sensors. 2009. 9(9): 7111-7131
42. Chen, K. I., Li, B. R., Chen, Y. T., Silicon Nanowire Field-Effect Transistor-Based Biosensors for Biomedical Diagnosis and Cellular Recording Investigation. Nano Today. 2011. 6: 131-154
43. Curreli, M., Zhang, R., Ishikawa, F. N., Chang, H. K., Cote, R. J., Zhou, C.W., Thompson, M. E. Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs. IEEE Transactions on Nanotechnology. 2008. 7(6): 651-667
44. Lin, C. H., Feng, M. H., Hwang, C.H., Wu, J. Y. S., Su, P. C., Lin, M. Y., Chen, C. H., Chen, B. H., Huang, B. Y., Lu, M. P., Yang, Y. S. Surface composition and interactions of mobile charges with immobilized molecules on polycrystalline silicon nanowires. Sensors and Actuators B. 2015. 211: 7-16
45. Chen, Y., Wang, X., Erramilli, S., Mohanty, P., Kalinowski, A. Silicon-Based Nanoelectronic Field-Effect pH Sensor with Local Gate Control. Applied Physics Letters. 2006. 89: 233512
46. Stern, E., Wagner, R., Sigworth, F. J., Breaker, R., Fahmy, T.M., Reed, M. A. Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors. Nanoletters. 2007. 7(11): 3405-3409
47. Rowland, C. E., Brown, C. W., Delehanty, J. B, Medintz, I. L. Nanomaterial-Based Sensors for the Detection of Biological Threat Agents. Materials Today. 2016. 19(8): 464-477
48. Luo, X., Morrin, A., Killard, A. J., Smyth, M. R. Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis. 2006. 18(4): 319 – 326
49. Lin, C. H., Hsiao, C. Y., Hung, C. H., Lo, Y. R., Lee, C. C., Su, C. J., Lin, H. C., Ko, F. H., Huang, T. Y., Yang, Y. S. Ultrasensitive Detection of Dopamine Using a Polysilicon Nanowire Field-Effect Transistor. Chemical Communication. 2008. 5749-5751
50. Lin, C.H., Hung, C. H., Hsiao, C. Y., Lin, H. C., Ko, F. H., Yang, Y. S. Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA. Biosensors and Bioelectronics. 2009. 24(10): 3019-3024
51. Hsiao, C. Y., Lin, C. H., Hung, C. H., Su, C. J., Lo, Y. R., Lee, C. C., Lin, H. C., Ko, F. H., Huang, T. Y., Yang, Y. S. Novel Poly-Silicon Nanowire Field Effect Transistor for Biosensing Application. Biosensors and Bioelectronics. 2009. 24(5): 1223-1229
52. Idila, N., Hedströma, M., Denizlid, A., Mattiasson, B. Whole Cell Based Microcontact Imprinted Capacitive Biosensor for the Detection of Escherichia coli. Biosensors and Bioelectronics. 2017. 87: 807-815
53. Alocilja, E. C., Radke, S. M. Market Analysis of Biosensors for Food Safety. Biosensors and Bioelectronics. 2003. 18: 841-846
54. Enright, M. C., Robinson, D. A., Randle, G., Feil, E. J., Grundmann, H., Spratt, B. G. The Evolutionary History of Methicillin-Resistant Staphylococcus aureus (MRSA). PNAS. 2002. 99(11): 7687–7692
55. Lim, D., Strynadka, N. C. J. Structural Basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nature Structural Biology. 2002. 9: 870-876
56. Tokue, Y., Shoji, S., Satoh, K., Watanabe, A., Motomiya, M. Comparison of a Polymerase Chain Reaction Assay and a Conventional Microbiologic Method for Detection of Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy. 1992. 36(1): 6-9
57. Chaki, N. K., Vijayamohanan, K. Self-Assembled Monolayers as a Tunable Platform for Biosensor Applications. Biosensors and Bioelectronics. 2002 17: 1–12
58. Choi, S. W., Choi, W. B., Lee, Y. H., Ju, B. K., Sung, M. Y., Kim, B. H. The Analysis of Oxygen Plasma Pretreatment for Improving Anodic Bonding, Journal of the Electrochemical Society. 2002. 149: G8–G11.
59. Zucker, O., Langheinrich, W., Kulozik, M., Goebel, H. Application of Oxygen Plasma Processing to Silicon Direct Bonding. Sensors and Actuators A: Physical. 1993. 36(3): 227-231
60. Gunda, N. S. K., Singh, m., Norman, L., Kaurb, K., Mitra, S. K. Optimization and Characterization of Biomolecule Immobilization on Silicon Substrates using (3-aminopropyl)triethoxysilane (APTES) and Glutaraldehyde. Applied Surface Science. 2014. 305: 522-530
61. Wahid, M. H., Eroglu, E., LaVars, S. M., Newton, K., Gibson, C. T., Stroeherd, U. H., Chen, X., Boulos, R. A., Raston, C. L., Harmer, S. L. Microencapsulation of Bacterial Strains with Graphene Oxide Nanosheets Using Vortex Fluidics. The Royal Society of Chemistry. 2015. 5 (37): 424-430
62. Zaytseva, N. V, Goral, V. N., Montagna, R. A., Baeumner, A. J. Development of a Microfluidic Biosensor Module for Pathogen Detection. Lab on a Chip. 2005. 5: 805-811
63. Chiem, N. and Harrison D. J. Microchip-Based Capillary Electrophoresis for Immunoassays: Analysis of Monoclonal Antibodies and Theophylline, Analytical Chemistry. 1997. 69(3): 373–378
64. Silhavy, T. J., Kahne, D., Walker, S., The Bacterial Cell Envelope. Cold Spring Harb Perspect Biol. 2010. 2(5): a000414.
65. Singha, R., Mukherjee, M. D., Sumanaa, G., Gupta R.K., Soode, S., Malhotra, B. D. Biosensors for Pathogen Detection: A Smart Approach Towards Clinical Diagnosis. Sensors and Actuators B. 2014. 197: 385–404
66. Nazemi,E., Aithal, S., Hassen, W. M., Frost, E. H., Dubowski, J. J. GaAs/AlGaAs Heterostructure Based Photonic Biosensor for Rapid Detection of Escherichia coli in Phosphate Buffered Saline Solution. Sensors and Actuators B: Chemical. 2015. 207: 556-562
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top