(3.238.7.202) 您好!臺灣時間:2021/02/26 16:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王審之
研究生(外文):Wang, Shen-Chih
論文名稱:探討腎損傷中微小核醣核酸所扮演的角色
論文名稱(外文):Explore the evolving mechanisms of miRNAs in kidney injury
指導教授:黃憲達黃憲達引用關係廖光文
指導教授(外文):Huang, Hsien-DaLiao, Kuang-Wen
口試委員:黃憲達廖光文鄒協成陳文亮張資昊
口試委員(外文):Huang, Hsien-DaLiao, Kuang-WenTzou, Shey-CherngChen, Wen-LiangChang, Tzu-Hao
口試日期:2019-04-13
學位類別:博士
校院名稱:國立交通大學
系所名稱:生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:75
中文關鍵詞:腎損傷微小核醣核酸慢性腎臟病心血管疾病內皮細胞功能缺損血管內膜新生
外文關鍵詞:kidney injurymicroRNAchronic kidney diseasecardiovascular diseaseendothelial dysfunctionneointimal hyperplasia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
慢性腎病變病患發生心血管疾病的危險性大幅上升,慢性腎病變患者多死於心血管疾病。隨著國人飲食習慣西化及生活形態的改變,根據美國腎臟病登錄系統《末期腎臟病2007年年報》顯示,台灣末期腎臟病發生率(新生病例)和盛行率(累積總病人數),都是世界第一。動脈血管粥狀硬化是造成心臟血管疾病最重要的致病機轉。若長期暴露於心臟血管疾病的危険因子會損傷血管內皮細胞,導致血管內皮細胞功能異常,喪失了保護血管的功能,可能導致單核球細胞與血小板容易粘著於受傷的血管壁上,以及引發血管內層平滑肌細胞的過度增生,之後血管壁即逐漸形成所謂的動脈硬化瘢塊(atherosclerotic plaque)。因此,探討慢性腎衰竭如何造成血管內皮細胞功能失調與釐清其分生機轉是避免慢性腎衰竭病患發生動脈粥狀硬化相當重要的關鍵。
微小核糖核酸(MicroRNAs/miRNAs)是一22個核苷酸、無法編碼出蛋白質的單股RNA,具有負向調控基因表現功能。miRNAs調控基因表現的機制與RNAi類似,成熟的miRNAs為一小片段的單股RNA,藉由結合至RISC複合體可以去辨認與其序列互補的標的mRNA,依據與標的mRNA完全互補與否,而將有標的mRNA降解或阻擋其進行蛋白質轉譯的機制。近期有研究指出miRNAs調控基因包含了內皮細胞生長、爬行與入侵能力等,因此,當miRNAs表現失衡時將會影響細胞的行為,但到目前為止關於miRNAs再慢性腎病變是如何影響內皮細胞發炎進而導致血管動脈硬化病不是非常清楚。
本研究希冀釐清當發生腎損傷與慢性腎病變時血中miRNAs之變化,同時探討其中的作用機轉,首先我們將檢測急性腎損傷下血中miRNAs的變化,希望找到早期偵測的生物標劑。接著檢視腎毒素如何影響miRNAs進而引發血管內皮發炎,另外我們亦針對洗腎動靜脈廔管栓塞的機轉做探討。期能對於未來臨床應用治療時能提供重要資料。
Chronic kidney disease (CKD) is a common and serious public health problem globally. Taiwan has the highest prevalence of end-stage renal disease (ESRD) in the world with 12% of adults affected by CKD. Numerous clinical studies have demonstrated excess cardiovascular risk is associated with CKD, and about half of CKD patients die from cardiovascular diseases. Novel therapeutic strategies showed some promising results, but morbidity and mortality of ESRD patients throughout the last decade did not decrease markedly. Therefore, exploring the underlying mechanisms for vasculopathy in CKD patients is essential to improve clinical outcomes.
MicroRNAs (miRs) are endogenous 20-22 nucleotides noncoding small RNAs that can act as endogenous RNA interference. MiRs are key regulators in cell function including endothelial cells, through regulating nitric oxide via eNOS, angiogenesis, and inflammation. For example, endothelial miR-126 and miR-483 are important regulators in angiogenesis and are required in endothelial repair and homeostasis. In addition to their intracellular functions, miRs can also be secreted through microparticles (MPs) for intercellular communication. An increase in endothelium-derived circulating MPs have been demonstrated in patients with ESRD and these MPs impair the NO-dependent vasodilation of rat aorta.
We tried to script the miRs roles in CKD patients through our study. First we will investigate circulating miRs in kidney injury mice model and patients. We wanted to identify possible miRs for kidney injury biomarker for clinicians to start treatment earlier. Second, given the prevalence of oxidative stress and endothelial dysfunction resulted from uremia in CKD, we will investigate whether miRs plays a pivotal role linking CKD and endothelial dysfunction. Finally we will investigate miR rols in neointimal hyperplasia in arterial-venous fistula for hemodialysis. These experiments may extend current knowledge and provide important information in clinical treatment.
Table of Contents
中文摘要 I
Abstract II
Table of Cotents III
List of Figures V
List of Tables VII

Chapter 1 Introduction 1
1.1: Specific aim 1
Chapter 2 Background 3
2.1: Biomarkers for kidney injury 3
2.2: Endothelial function-related microRNAs in chronic kidney disease 6
2.3: Arterial-venous fistula 9
Chapter 3 Methods 13
3.1 Biomarkers for kidney injury 13
3.1.1 Explore the transmission of remote ischemic preconditioning signals through circulation 13
3.1.2 Investigation kidney specific microRNA changes in 5/6 nephrectomy mice model and liver recipients 21
3.2 Endothelial function related microRNA in chronic kidney disease 23
3.3 Arterial-venous fistula neointimal hyperplasia 27
3.3.1 Screening of the microRNA changes in arterial venous fistula of mice without chronic kidney disease 27
3.3.2 Vasculopathy in AVF mice model 29
3.3.3 Circulating levels of candidate microRNAs and their origin 30
3.3.4 Verification candidate microRNAs roles in endotheliopathy 32
Chapter 4 Results 35
4.1 Biomarkers for kidney injury 35
4.1.1 Remote ischemic preconditioning mechanism 35
4.1.2 Identify kidney specific microRNA for kidney injury 40
4.2 Endothelial function-related microRNAs in chronic kidney disease 43
4.2.1 Identification of microRNAs expression in chronic kidney disease patients 43
4.2.2 Verifying our findings in cell experiments 45
4.2.3 To verify the results in CKD mice 48
4.2.4 verifying our findings in chronic kidney disease patients 49
4.3 Arterial venous fistula neointimal hyperplasia 52
4.3.1 Arterial venous fistula mice model 52
4.3.2 TGF- pathway activation in neointimal hyperplasia 52
4.3.3 Small RNAseq for neointimal hyperplasia 53
Chapter 5 Discussion 57
5.1 Kidney injury biomarkers 57
5.2 Endothelial function related microRNAs in chronic kidney disease 59
5.3 microRNA and modulating pathwaysin arterial venous fistula neointimal hyperplasia 63
Chapter 6 Future work 64
6.1 Biomarkers for kidney injury 64
6.1.1 Verify CYR61 role in remote ischemic preconditioning 64
6.1.2 Predicting organ damage by CYR61 and tissue specific microRNA 64
6.2 Endothelial function related microRNAs 64
6.3 Arterial venous fistula neointimal hyperplasia 65
References
1. Schiffrin EL, Lipman ML, and Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116(1):85-97.
2. Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol. 2006;17(7):2034-47.
3. Baigent C, Burbury K, and Wheeler D. Premature cardiovascular disease in chronic renal failure. Lancet. 2000;356(9224):147-52.
4. Go AS, Chertow GM, Fan D, McCulloch CE, and Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296-305.
5. Kurihara O, Okamatsu K, Mizuno K, Takano M, Yamamoto M, Kobayashi N, et al. Coronary atherosclerosis and risk of acute coronary syndromes in chronic kidney disease using angioscopy and the kidney disease: Improving Global Outcomes (KDIGO) classification. Atherosclerosis. 2015;243(2):567-72.
6. Levey AS, Beto JA, Coronado BE, Eknoyan G, Foley RN, Kasiske BL, et al. Controlling the epidemic of cardiovascular disease in chronic renal disease: what do we know? What do we need to learn? Where do we go from here? National Kidney Foundation Task Force on Cardiovascular Disease. Am J Kidney Dis. 1998;32(5):853-906.
7. Bock JS, and Gottlieb SS. Cardiorenal syndrome: new perspectives. Circulation. 2010;121(23):2592-600.
8. Nuthalapati A, Schluterman N, Khanna A, Greenberg D, and Thuluvath PJ. Impact of Acute Kidney Injury on Mortality of Patients Hospitalized for Complications of Cirrhosis. J Clin Exp Hepatol. 2017;7(4):290-9.
9. DellaVolpe J, and Al-Khafaji A. Acute Kidney Injury Before and After Liver Transplant. J Intensive Care Med. 2018:885066618790558.
10. Zhu M, Li Y, Xia Q, Wang S, Qiu Y, Che M, et al. Strong impact of acute kidney injury on survival after liver transplantation. Transplant Proc. 2010;42(9):3634-8.
11. Wang SC, Teng WN, Chang KY, Susan Mandell M, Ting CK, Chu YC, et al. Fluid management guided by stroke volume variation failed to decrease the incidence of acute kidney injury, 30-day mortality, and 1-year survival in living donor liver transplant recipients. J Chin Med Assoc. 2012;75(12):654-9.
12. Avci Cicek E, Rota S, Dursun B, and Kavalci E. Evaluation of serum NGAL and hepcidin levels in chronic kidney disease patients. Ren Fail. 2016;38(1):35-9.
13. McIlroy DR, Wagener G, and Lee HT. Biomarkers of acute kidney injury: an evolving domain. Anesthesiology. 2010;112(4):998-1004.
14. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, and Group NM-aI. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;54(6):1012-24.
15. Flower DR, North AC, and Sansom CE. The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta. 2000;1482(1-2):9-24.
16. Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, and Devarajan P. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 2003;63(5):1714-24.
17. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10):2534-43.
18. Schiffl H, and Lang SM. Update on biomarkers of acute kidney injury: moving closer to clinical impact? Mol Diagn Ther. 2012;16(4):199-207.
19. Wyckoff T, and Augoustides JG. Advances in acute kidney injury associated with cardiac surgery: the unfolding revolution in early detection. J Cardiothorac Vasc Anesth. 2012;26(2):340-5.
20. Vanmassenhove J, Vanholder R, Nagler E, and Van Biesen W. Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transplant. 2013;28(2):254-73.
21. Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann LM, Druml W, Bauer P, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15(6):1597-605.
22. Chertow GM, Burdick E, Honour M, Bonventre JV, and Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365-70.
23. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell. 2008;2(3):284-91.
24. Bonventre JV. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol. 2003;14 Suppl 1:S55-61.
25. Jang HR, Ko GJ, Wasowska BA, and Rabb H. The interaction between ischemia-reperfusion and immune responses in the kidney. J Mol Med (Berl). 2009;87(9):859-64.
26. Jang HR, and Rabb H. The innate immune response in ischemic acute kidney injury. Clin Immunol. 2009;130(1):41-50.
27. Waikar SS, Liu KD, and Chertow GM. Diagnosis, epidemiology and outcomes of acute kidney injury. Clin J Am Soc Nephrol. 2008;3(3):844-61.
28. Thadhani R, Pascual M, and Bonventre JV. Acute renal failure. N Engl J Med. 1996;334(22):1448-60.
29. Liang M, Liu Y, Mladinov D, Cowley AW, Jr., Trivedi H, Fang Y, et al. MicroRNA: a new frontier in kidney and blood pressure research. Am J Physiol Renal Physiol. 2009;297(3):F553-8.
30. Shapiro MD, Bagley J, Latz J, Godwin JG, Ge X, Tullius SG, et al. MicroRNA expression data reveals a signature of kidney damage following ischemia reperfusion injury. PLoS One. 2011;6(8):e23011.
31. Chen X, Liu X, Wan X, Wu Y, Chen Y, and Cao C. Ischemic preconditioning attenuates renal ischemia-reperfusion injury by inhibiting activation of IKKbeta and inflammatory response. Am J Nephrol. 2009;30(3):287-94.
32. Hausenloy DJ, and Yellon DM. Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis. 2009;204(2):334-41.
33. Yin DP, Sankary HN, Chong AS, Ma LL, Shen J, Foster P, et al. Protective effect of ischemic preconditioning on liver preservation-reperfusion injury in rats. Transplantation. 1998;66(2):152-7.
34. Safian RD, and Textor SC. Renal-artery stenosis. N Engl J Med. 2001;344(6):431-42.
35. Schrier RW, and Wang W. Acute renal failure and sepsis. N Engl J Med. 2004;351(2):159-69.
36. Wever KE, Warle MC, Wagener FA, van der Hoorn JW, Masereeuw R, van der Vliet JA, et al. Remote ischaemic preconditioning by brief hind limb ischaemia protects against renal ischaemia-reperfusion injury: the role of adenosine. Nephrol Dial Transplant. 2011;26(10):3108-17.
37. Cochrane J, Williams BT, Banerjee A, Harken AH, Burke TJ, Cairns CB, et al. Ischemic preconditioning attenuates functional, metabolic, and morphologic injury from ischemic acute renal failure in the rat. Ren Fail. 1999;21(2):135-45.
38. Wever KE, Menting TP, Rovers M, van der Vliet JA, Rongen GA, Masereeuw R, et al. Ischemic preconditioning in the animal kidney, a systematic review and meta-analysis. PLoS One. 2012;7(2):e32296.
39. Guo H, Ingolia NT, Weissman JS, and Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835-40.
40. Lee RC, Feinbaum RL, and Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-54.
41. Wightman B, Ha I, and Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855-62.
42. Kozomara A, and Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39(Database issue):D152-7.
43. Dou L, Jourde-Chiche N, Faure V, Cerini C, Berland Y, Dignat-George F, et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost. 2007;5(6):1302-8.
44. Glorieux G, Cohen G, Jankowski J, and Vanholder R. Platelet/Leukocyte activation, inflammation, and uremia. Semin Dial. 2009;22(4):423-7.
45. Jourde-Chiche N, Dou L, Cerini C, Dignat-George F, and Brunet P. Vascular incompetence in dialysis patients--protein-bound uremic toxins and endothelial dysfunction. Semin Dial. 2011;24(3):327-37.
46. Deltombe O, Van Biesen W, Glorieux G, Massy Z, Dhondt A, and Eloot S. Exploring Protein Binding of Uremic Toxins in Patients with Different Stages of Chronic Kidney Disease and during Hemodialysis. Toxins (Basel). 2015;7(10):3933-46.
47. Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol. 2009;4(10):1551-8.
48. Yu M, Kim YJ, and Kang DH. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clin J Am Soc Nephrol. 2011;6(1):30-9.
49. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20(4):368-76.
50. Qiao Y, Ma N, Wang X, Hui Y, Li F, Xiang Y, et al. MiR-483-5p controls angiogenesis in vitro and targets serum response factor. FEBS Lett. 2011;585(19):3095-100.
51. Kumar S, Kim CW, Simmons RD, and Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 2014;34(10):2206-16.
52. Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest. 2012;122(11):4190-202.
53. Jansen F, Wang H, Przybilla D, Franklin BS, Dolf A, Pfeifer P, et al. Vascular endothelial microparticles-incorporated microRNAs are altered in patients with diabetes mellitus. Cardiovasc Diabetol. 2016;15:49.
54. Alexy T, Rooney K, Weber M, Gray WD, and Searles CD. TNF-alpha alters the release and transfer of microparticle-encapsulated miRNAs from endothelial cells. Physiol Genomics. 2014;46(22):833-40.
55. Amabile N, Guerin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J, et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol. 2005;16(11):3381-8.
56. Chen Z, Wen L, Martin M, Hsu CY, Fang L, Lin FM, et al. Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a. Circulation. 2015;131(9):805-14.
57. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324(5935):1710-3.
58. Loyer X, Potteaux S, Vion AC, Guerin CL, Boulkroun S, Rautou PE, et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. 2014;114(3):434-43.
59. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677-84.
60. Sands JJ. Increasing AV fistulas: revisiting a time-tested solution. Seminars in dialysis. 2000;13(6):351-3.
61. Roy-Chaudhury P, and Lee TC. Vascular stenosis: biology and interventions. Curr Opin Nephrol Hypertens. 2007;16(6):516-22.
62. Rooijens PP, Tordoir JH, Stijnen T, Burgmans JP, Smet de AA, and Yo TI. Radiocephalic wrist arteriovenous fistula for hemodialysis: meta-analysis indicates a high primary failure rate. Eur J Vasc Endovasc Surg. 2004;28(6):583-9.
63. Huijbregts HJ, Bots ML, Wittens CH, Schrama YC, Moll FL, Blankestijn PJ, et al. Hemodialysis arteriovenous fistula patency revisited: results of a prospective, multicenter initiative. Clin J Am Soc Nephrol. 2008;3(3):714-9.
64. Al-Jaishi AA, Oliver MJ, Thomas SM, Lok CE, Zhang JC, Garg AX, et al. Patency rates of the arteriovenous fistula for hemodialysis: a systematic review and meta-analysis. Am J Kidney Dis. 2014;63(3):464-78.
65. Wong V, Ward R, Taylor J, Selvakumar S, How TV, and Bakran A. Factors associated with early failure of arteriovenous fistulae for haemodialysis access. Eur J Vasc Endovasc Surg. 1996;12(2):207-13.
66. Feldman HI, Joffe M, Rosas SE, Burns JE, Knauss J, and Brayman K. Predictors of successful arteriovenous fistula maturation. Am J Kidney Dis. 2003;42(5):1000-12.
67. Aitken E, Jackson A, Kong C, Coats P, and Kingsmore D. Renal function, uraemia and early arteriovenous fistula failure. BMC Nephrol. 2014;15:179.
68. Gagliardi GM, Rossi S, Condino F, Mancuso D, Greco F, Tenuta R, et al. Malnutrition, infection and arteriovenous fistula failure: is there a link? J Vasc Access. 2011;12(1):57-62.
69. Smith GE, Gohil R, and Chetter IC. Factors affecting the patency of arteriovenous fistulas for dialysis access. J Vasc Surg. 2012;55(3):849-55.
70. Agarwal A, and Segal MS. Intimal exuberance: veins in jeopardy. The American journal of pathology. 2003;162(6):1759-61.
71. Caplice NM, Wang S, Tracz M, Croatt AJ, Grande JP, Katusic ZS, et al. Neoangiogenesis and the presence of progenitor cells in the venous limb of an arteriovenous fistula in the rat. Am J Physiol Renal Physiol. 2007;293(2):F470-5.
72. Roy-Chaudhury P, Spergel LM, Besarab A, Asif A, and Ravani P. Biology of arteriovenous fistula failure. J Nephrol. 2007;20(2):150-63.
73. Rekhter M, Nicholls S, Ferguson M, and Gordon D. Cell proliferation in human arteriovenous fistulas used for hemodialysis. Arterioscler Thromb. 1993;13(4):609-17.
74. Roy-Chaudhury P, Kelly BS, Miller MA, Reaves A, Armstrong J, Nanayakkara N, et al. Venous neointimal hyperplasia in polytetrafluoroethylene dialysis grafts. Kidney Int. 2001;59(6):2325-34.
75. Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005;85(1):1-31.
76. Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, and Lindsey ML. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda). 2013;28(6):391-403.
77. Galis ZS, Sukhova GK, Lark MW, and Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994;94(6):2493-503.
78. Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Unemori EN, Lark MW, et al. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res. 1994;75(1):181-9.
79. Zempo N, Kenagy RD, Au YP, Bendeck M, Clowes MM, Reidy MA, et al. Matrix metalloproteinases of vascular wall cells are increased in balloon-injured rat carotid artery. J Vasc Surg. 1994;20(2):209-17.
80. Mott JD, and Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol. 2004;16(5):558-64.
81. Chan CY, Chen YS, Ma MC, and Chen CF. Remodeling of experimental arteriovenous fistula with increased matrix metalloproteinase expression in rats. J Vasc Surg. 2007;45(4):804-11.
82. Chang CJ, Ko YS, Ko PJ, Hsu LA, Chen CF, Yang CW, et al. Thrombosed arteriovenous fistula for hemodialysis access is characterized by a marked inflammatory activity. Kidney Int. 2005;68(3):1312-9.
83. Croatt AJ, Grande JP, Hernandez MC, Ackerman AW, Katusic ZS, and Nath KA. Characterization of a model of an arteriovenous fistula in the rat: the effect of L-NAME. Am J Pathol. 2010;176(5):2530-41.
84. Juncos JP, Tracz MJ, Croatt AJ, Grande JP, Ackerman AW, Katusic ZS, et al. Genetic deficiency of heme oxygenase-1 impairs functionality and form of an arteriovenous fistula in the mouse. Kidney International. 2008;74(1):47-51.
85. Lin CC, Yang WC, Chung MY, and Lee PC. Functional polymorphisms in matrix metalloproteinases-1, -3, -9 are associated with arteriovenous fistula patency in hemodialysis patients. Clin J Am Soc Nephrol. 2010;5(10):1805-14.
86. Mason DP, Kenagy RD, Hasenstab D, Bowen-Pope DF, Seifert RA, Coats S, et al. Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circ Res. 1999;85(12):1179-85.
87. Dollery CM, Humphries SE, McClelland A, Latchman DS, and McEwan JR. Expression of tissue inhibitor of matrix metalloproteinases 1 by use of an adenoviral vector inhibits smooth muscle cell migration and reduces neointimal hyperplasia in the rat model of vascular balloon injury. Circulation. 1999;99(24):3199-205.
88. Forough R, Koyama N, Hasenstab D, Lea H, Clowes M, Nikkari ST, et al. Overexpression of tissue inhibitor of matrix metalloproteinase-1 inhibits vascular smooth muscle cell functions in vitro and in vivo. Circ Res. 1996;79(4):812-20.
89. Guo L, Ning W, Tan Z, Gong Z, and Li X. Mechanism of matrix metalloproteinase axis-induced neointimal growth. J Mol Cell Cardiol. 2014;66:116-25.
90. Janardhanan R, Yang B, Vohra P, Roy B, Withers S, Bhattacharya S, et al. Simvastatin reduces venous stenosis formation in a murine hemodialysis vascular access model. Kidney Int. 2013;84(2):338-52.
91. Nath KA, Grande JP, Kang L, Juncos JP, Ackerman AW, Croatt AJ, et al. ss-Catenin is markedly induced in a murine model of an arteriovenous fistula: the effect of metalloproteinase inhibition. Am J Physiol Renal Physiol. 2010;299(6):F1270-7.
92. Wong CY, de Vries MR, Wang Y, van der Vorst JR, Vahrmeijer AL, van Zonneveld AJ, et al. Vascular remodeling and intimal hyperplasia in a novel murine model of arteriovenous fistula failure. J Vasc Surg. 2014;59(1):192-201 e1.
93. Liu X, Cheng Y, Zhang S, Lin Y, Yang J, and Zhang C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104(4):476-87.
94. Kee HJ, Park S, Kwon JS, Choe N, Ahn Y, Kook H, et al. B cell translocation gene, a direct target of miR-142-5p, inhibits vascular smooth muscle cell proliferation by down-regulating cell cycle progression. FEBS Lett. 2013;587(15):2385-92.
95. Liu X, Hong Q, Wang Z, Yu Y, Zou X, and Xu L. Transforming growth factor-beta-sphingosine kinase 1/S1P signaling upregulates microRNA-21 to promote fibrosis in renal tubular epithelial cells. Exp Biol Med (Maywood). 2015.
96. Loboda A, Sobczak M, Jozkowicz A, and Dulak J. TGF-beta1/Smads and miR-21 in Renal Fibrosis and Inflammation. Mediators Inflamm. 2016;2016:8319283.
97. Gava AL, Freitas FP, Balarini CM, Vasquez EC, and Meyrelles SS. Effects of 5/6 nephrectomy on renal function and blood pressure in mice. Int J Physiol Pathophysiol Pharmacol. 2012;4(3):167-73.
98. Silahtaroglu AN, Nolting D, Dyrskjot L, Berezikov E, Moller M, Tommerup N, et al. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat Protoc. 2007;2(10):2520-8.
99. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011. 2011;17(1).
100. Langmead B, Trapnell C, Pop M, and Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.
101. Friedlander MR, Mackowiak SD, Li N, Chen W, and Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic acids research. 2012;40(1):37-52.
102. Six I, Gross P, Remond MC, Chillon JM, Poirot S, Drueke TB, et al. Deleterious vascular effects of indoxyl sulfate and reversal by oral adsorbent AST-120. Atherosclerosis. 2015;243(1):248-56.
103. Chou CA, Ng HY, Kuo WH, Chiou TY, Pei SN, Li LC, et al. Rosiglitazone attenuates indoxyl sulphate-induced endothelial dysfunction. Clin Exp Pharmacol Physiol. 2015;42(3):287-92.
104. Chawla LS, Eggers PW, Star RA, and Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014;371(1):58-66.
105. Goldstein SL. Acute kidney injury biomarkers: renal angina and the need for a renal troponin I. BMC Med. 2011;9:135.
106. Zimmerman RF, Ezeanuna PU, Kane JC, Cleland CD, Kempananjappa TJ, Lucas FL, et al. Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery. Kidney Int. 2011;80(8):861-7.
107. Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost. 2006;4(3):566-73.
108. Fichtlscherer S, Zeiher AM, and Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol. 2011;31(11):2383-90.
109. Cocucci E, Racchetti G, and Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19(2):43-51.
110. Chen Y, Buyel JJ, Hanssen MJ, Siegel F, Pan R, Naumann J, et al. Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun. 2016;7:11420.
111. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, and Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423-33.
112. He M, Liang X, He L, Wen W, Zhao S, Wen L, et al. Endothelial dysfunction in rheumatoid arthritis: the role of monocyte chemotactic protein-1-induced protein. Arterioscler Thromb Vasc Biol. 2013;33(6):1384-91.
113. Vanholder R, Schepers E, Pletinck A, Nagler EV, and Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol. 2014;25(9):1897-907.
114. Lee WC, Li LC, Chen JB, and Chang HW. Indoxyl sulfate-induced oxidative stress, mitochondrial dysfunction, and impaired biogenesis are partly protected by vitamin C and N-acetylcysteine. ScientificWorldJournal. 2015;2015:620826.
115. Melamed ML, Plantinga L, Shafi T, Parekh R, Meyer TW, Hostetter TH, et al. Retained organic solutes, patient characteristics and all-cause and cardiovascular mortality in hemodialysis: results from the retained organic solutes and clinical outcomes (ROSCO) investigators. BMC Nephrol. 2013;14:134.
116. Wu IW, Hsu KH, Hsu HJ, Lee CC, Sun CY, Tsai CJ, et al. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients--a prospective cohort study. Nephrol Dial Transplant. 2012;27(3):1169-75.
117. Lin CJ, Wu CJ, Pan CF, Chen YC, Sun FJ, and Chen HH. Serum protein-bound uraemic toxins and clinical outcomes in haemodialysis patients. Nephrol Dial Transplant. 2010;25(11):3693-700.
118. Bammens B, Evenepoel P, Keuleers H, Verbeke K, and Vanrenterghem Y. Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients. Kidney Int. 2006;69(6):1081-7.
119. Ito S, Osaka M, Higuchi Y, Nishijima F, Ishii H, and Yoshida M. Indoxyl sulfate induces leukocyte-endothelial interactions through up-regulation of E-selectin. J Biol Chem. 2010;285(50):38869-75.
120. McConnell BB, and Yang VW. Mammalian Kruppel-like factors in health and diseases. Physiol Rev. 2010;90(4):1337-81.
121. de Winther MP, and Lutgens E. MiR-92a: at the heart of lipid-driven endothelial dysfunction. Circ Res. 2014;114(3):399-401.
122. Lai L, Song Y, Liu Y, Chen Q, Han Q, Chen W, et al. MicroRNA-92a negatively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase. J Biol Chem. 2013;288(11):7956-67.
123. Butt M, Dwivedi G, Blann A, Khair O, and Lip GY. Endothelial dysfunction: methods of assessment & implications for cardiovascular diseases. Curr Pharm Des. 2010;16(31):3442-54.
124. Fliser D, Wiecek A, Suleymanlar G, Ortiz A, Massy Z, Lindholm B, et al. The dysfunctional endothelium in CKD and in cardiovascular disease: mapping the origin(s) of cardiovascular problems in CKD and of kidney disease in cardiovascular conditions for a research agenda. Kidney Int Suppl (2011). 2011;1(1):6-9.
125. Schulman G, Berl T, Beck GJ, Remuzzi G, Ritz E, Arita K, et al. Randomized Placebo-Controlled EPPIC Trials of AST-120 in CKD. J Am Soc Nephrol. 2015;26(7):1732-46.
126. Wu HM, Sun HJ, Wang F, Yang M, Dong BR, and Liu GJ. Oral adsorbents for preventing or delaying the progression of chronic kidney disease. Cochrane Database Syst Rev. 2014;10:CD007861.
127. Morris ST, McMurray JJ, Rodger RS, and Jardine AG. Impaired endothelium-dependent vasodilatation in uraemia. Nephrol Dial Transplant. 2000;15(8):1194-200.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔