(3.237.20.246) 您好!臺灣時間:2021/04/14 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柳翊涵
研究生(外文):Liu, I-Han
論文名稱:非晶氧化銦鎢奈米薄片電晶體源極/汲極工程之研究
論文名稱(外文):Study on Source/Drain Engineering of Amorphous Indium Tungsten Oxide Nano-Sheet Transistors
指導教授:劉柏村劉柏村引用關係田仲豪
指導教授(外文):Liu, Po-TsunTien, Chung-Hao
口試委員:趙天生吳孟奇戴亞翔
口試委員(外文):Chao, Tien-ShengWu, Meng-ChyiDai, Ya-Xiang
口試日期:2018-09-18
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:91
中文關鍵詞:氧化銦鎢電晶體源極/汲極工程奈米薄片
外文關鍵詞:Indium tungsten oxideTransistorsSource/drain engineeringNano-sheet
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要 I
Abstract III
Acknowledgement (誌謝) V
Table of Contents VI
Figure Captions X
Table Captions XIV
Chapter 1 Introduction 1
1.1 General Background 1
1.2 Transparent Amorphous Oxide Semiconductors 4
1.3 Motivations 6
1.4 Organization of the Thesis 10
Chapter 2 Experimental Procedures 11
2.1 Experiment Procedures 11
2.2 NST Devices Fabrication 12
2.2.1 The Sputter System 14
2.2.2 Plasma-Enhanced Atomic Layer Deposition (PEALD) 16
2.2.3 Photolithography Processes 18
2.2.4 Lift-Off Process 19
2.2.5 Electron Beam Evaporation System 20
2.2.6 Thermal Evaporation System 21
2.3 Metal-Insulator-Semiconductor (MIS) Capacitor Fabrication 22
2.4 a-IWO sample fabrication for Hall measurement 23
2.5 Device Parameters Extraction Methods 24
2.5.1 Basic Electrical Characteristics Measurement 24
2.5.2 Determination of Threshold Voltage 25
2.5.3 Determination of Subthreshold Swing 25
2.5.4 Determination of Field-Effect Mobility 26
2.5.5 Determination of Ion/Ioff Current ratio 27
Chapter 3 Results and Discussion 28
3.1 Material Analysis 28
3.1.1 X-Ray Photoelectron Spectroscopy (XPS) 28
3.1.2 Hall Effect Measurement 33
3.1.3 Atomic Force Microscopy (AFM) Measurement 35
3.1.4 Summary 1 36
3.2 Basic Characteristics of a-IWO NSTs 37
3.2.1 Effects of Different Oxygen Flow Rate 37
3.2.2 Capacitance-Voltage Characteristics Measurement 39
3.2.3 Transmission Electron Microscopy (TEM) Measurement 46
3.2.4 Summary 2 49
3.3 Effects of Different Source/Drain Electrodes in a-IWO NSTs 50
3.3.1 Extraction of Contact Resistance with Different Source/Drain Electrodes 50
3.3.2 Effects of Different Source/Drain Electrodes to IWO Diode Currents 55
3.3.3 Effects of Scaling Channel Length on a-IWO NSTs with Different S/D Electrodes 57
3.3.4 Gate Induced Drain Leakage-like (GIDL-like) Effect at Off-State 64
3.3.5 Summary 3 66
3.4 Electrical Reliability of a-IWO NSTs with Passivation 68
3.4.1 Electrical Stability of a-IWO NSTs without Passivation 68
3.4.2 Mechanisms of VTH Shifting 70
3.4.3 Passivation with Organic Material, SU-8 73
3.4.4 Positive and Negative Bias Stress 75
3.4.5 Negative Bias Illumination Stress 77
3.4.6 Temperature and Humidity Stability 79
3.4.7 Summary 4 80
Chapter 4 Conclusion and Future Work 81
4.1 Conclusion 81
4.2 Future Work 83
Reference 84
Vita 91
[1] M. Katayama, “TFT-LCD technology,” Thin Solid Films., vol. 341, no. 1, pp. 140-147, Mar. 1999.
[2] J. Jang, “Amorphous Silicon Thin Film Transistors,” in Thin Film Transistors: Materials and Processes., vol. 1, Y. Kuo, Ed. New York: Kluwer Academic, 2004, pp. 1-10.
[3] K. Toshio, N. Kenji, and H. Hideo, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater., vol. 11, no. 4, pp. 044305-1-044305-23, Sep. 2010.
[4] T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater., vol. 2, no. 1, pp. 15-22, Jan. 2010.
[5] K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K. Hotta, “High-performance TFTs fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon film,” IEEE Trans. Electron Devices., vol. 36, no. 12, pp. 2868-2872, Dec. 1989.
[6] H. Seiichiro, A. Daisuke, H. Yasushi, M. Kazuyuki, K. Takahiro, I. Satoshi, and S. Tatsuya, “High-quality SiO2/Si interface formation and its application to fabrication of low-temperature-processed polycrystalline Si thin-film transistor,” Jpn. J. Appl. Phys., vol. 41, no. 6A, pp. 3646-3650, Jun. 2002.
[7] E. N. Cho, J. H. Kang, C. E. Kim, P. Moon, and I. Yun, “Analysis of bias stress instability in amorphous InGaZnO thin-film transistors,” IEEE Trans. Device Mater. Rel., vol. 11, no. 1, pp. 112-117, Mar. 2011.
[8] K. Nomura, H. Ohta. A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature., vol. 432, no. 7016, pp. 488–492, Nov. 2004.
[9] E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Adv. Mater., vol. 24, pp. 2945–2986, 2012.
[10] J. S. Park, H. Kim, and I. D. Kim, “Overview of electroceramic materials for oxide semiconductor thin film transistors,” J. Electroceram., vol. 32, pp. 117-140, 2014.
[11] J. S. Park, T. W. Kim, D. Stryakhilev, J. S. Lee, S. G. An, Y. S. Pyo, D. B. Lee, Y. G. Mo, D. U. Jin, and H. K. Chung, “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors,” Appl. Phys. Lett., vol. 95, pp. 013503-1-013503-3, 2009.
[12] H. J. Kim and J. H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview,” Sens. Actuators, B., vol. 192, pp. 607-627, 2014.
[13] C. G. Granqvist, “Electrochromics for smart windows: Oxide-based thin films and devices,” Thin Solid Films., vol. 564, pp.1-38, 2014.
[14] S. Ruhle, A. Y. Anderson, H. N. Barad, B. Kupfer, Y. Bouhadana, E. R. Hodesh, and A. Zaban, “All-Oxide Photovoltaics,” J. Phys. Chem. Lett., 3(24), pp. 3755-3764, 2012.
[15] I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature., vol. 503, pp. 509-512, Nov. 2013.
[16] K. Kaneko, N. Inoue, S. Saito, N. Furutake, and Y. Hayashi, “A novel BEOL transistor (BETr) with InGaZnO embedded in Cu-interconnects for on-chip high voltage I/Os in standard CMOS LSIs,” in Proc. Symp. VLSI Technol. (VLSIT), Honolulu, HI, USA, Jun. 2011, pp. 120-121.
[17] W. S. Hui, X. Jia, K. Mei, S. C. Chang, H. T. Yu, L. H. Chan, C. Derek, L. C. Bin, J. Y. Wu, T. R. Yew, Y. Endo, K. Kato, and S. Yamazaki, “Extremely low power c-axis aligned crystalline In-Ga-Zn-O 60 nm transistor integrated with industry 65 nm Si MOSFET for IoT normally-off CPU application,” in Proc. Symp. VLSI Technol. (VLSIT), Honolulu, HI, USA, Jun. 2016, pp. 1-2.
[18] Y. Li, J. Yang, Y. Wang, P. Ma, Y. Yuan, J. Zhang, Z. Lin, L. Zhou, Q. Xin, and A. Song, “Complementary integrated circuits based on p-type SnO and n-type IGZO thin-film transistors,” IEEE Electro Device Lett., vol. 39, no.2, pp. 208-211, Feb. 2018.
[19] J. H. Jeon, “Leakage current of bottom-gated amorphous silicon thin-film transistors under backside illumination,” J. Korean Phys. Soc., vol. 50, no. 4, Apr. 2007, pp. 1189-1192.
[20] Y. Yamaji, M. Ikeda, M. Akiyama, and T. Endo, “Characterization of photo leakage current of amorphous silicon thin-film transistors,” Jpn J Appl Phys., vol. 38, pp.6202-6206, 1999.
[21] S. Narushima, M. Orita, M. Hirano, and H. Hosono, “Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2 CdO‧GeO2,” Phys. Rev. B., vol. 66, no. 3, pp. 035203-1-035203-8, Jul. 2002.
[22] J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, “Review of recent developments in amorphous oxide semiconductor thin-film transistor devices,” Thin solid Films., vol. 520, no. 6, pp. 1679-1693, Jan. 2012.
[23] S. X. Lao, R. M. Martin, and J. P. Chang, “Plasma enhanced atomic layer deposition of HfO2 and ZrO2 high-k thin films,” J. Vac. Sci. Technol. A., vol. 23, no. 3. pp. 488-496, May 2005.
[24] R. John, “High dielectric constant gate oxides for metal oxide Si transistors,” Rep. Prog. Phys., vol. 69, no. 2, pp. 327-396, Dec. 2006
[25] J. P. Colinge, C, W, Lee, N. Dehdashti Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti, and R. Yu, “Junctionless transistors: physics and properties,” Semiconductor-on-insulator materials for nanoelectronics applications., pp. 187-200, Springer-Verlag Berlin Heidelberg 2011.
[26] S. Intekhab Amin and R. K. Sarin, “Junctionless transistor : a review,” third international conference on computational intelligence and information technology (CIIT)., pp. 432-439, 2013.
[27] A. Liu, G. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins, and F. Shan, “Eco-friendly, solution-processed In-W-O thin films and their applications in low-voltage, high-performance transistors,” J. Mater. Chem C., vol. 4, pp. 4478-4484, 2016.
[28] N. Mitoma, S. Aikawa, X. Gao, T. Kizu, M. Shimizu, M. F. Lin, T. Nabatame, and K. Tsukagoshi, “Stable amorphous In2O3-based thin-film transistors by incorporating SiO2 to suppress oxygen vacancies,” Appl. Phys. Lett., vol. 104, no. 10, pp. 102103-1-102103-5, Feb. 2014.
[29] P. T. Liu, C. H. Chang, and C. J. Chang, ” Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure,” Appl. Phys. Lett., vol. 108, no. 26, pp. 261603-1-261603-4, Jun. 2016.
[30] C. T. Wang and P. P. Hu, “Analysis of heterojunction GaAs1-xSbx/In1-yGayAs tunnel FETs considering line tunneling,” The 7th IEEE International Symposium on Next-Generation Electronics (ISNE 2018).
[31] E. Llobet, G. Molas, P. Molinas, J. Calderer, X. Vilanova, J. Brezmes, J. E. Sueiras, and X. Correig, “Fabrication of highly selective tungsten oxide ammonia sensors,” J. Electrochem. Soc., vol. 147, no. 2, pp. 776-779, Feb. 2000.
[32] S. V. Green. A. Kuzmin, J. Purans, C. G. Granqvist, and G. A. Niklasson, “Structure and composition of sputter-deposited nickel-tungsten oxide films,” Thin Solid Films., vol. 519, no. 7, pp.2062-2066, Jan. 2011.
[33] S. Aikawa, T. Nabatame, and K. Tsukagoshi, “Effects of dopants in InOx-based amorphous oxide semiconductors for thin-film transistor application,” Appl. Phys. Lett., vol. 103, no. 17, pp. 172105-1-172105-5, Oct. 2013.
[34] H. Li, M. Qu, and Q. Zhang, “Influence of tungsten doping on the performance of indium-zinc-oxide thin-film transistors,” IEEE Electron Device Lett., vol. 34, no. 10, pp. 1268-1270, Oct. 2013.
[35] Q. Zhang, X. Li and G. Li, “Dependence of electrical and optical properties on thickness of tungsten-doped indium oxide thin films,” Thin Solid Films., vol. 517, no. 2, pp. 613-616, Nov. 2008.
[36] Y. P. Gong, A. D. Li, Q. Xu, Z. Chao, and W. Di, “Interfacial structure and electrical properties of ultrathin HfO2 dielectric films on Si substrates by surface sol-gel method,” J. Phys. D: Appl. Phys., vol. 42, no. 1, pp.015405-1-015405-5, Jan. 2009.
[37] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition,” Appl. Phys. Lett., vol. 81, no. 3, pp. 472-474, Jul. 2002.
[38] J. Robertson, “High dielectric constant oxides,” Eur. Phys. J. Appl. Phys., vol. 28, pp. 265-291, Dec. 2004.
[39] G. K. Reeves and H. B. Harrison, “Obtaining the Specific contact resistance from transmission line model measurements,” IEEE Electron Device Lett., vol. 3, no. 5, pp. 111-113, May. 1982.
[40] J. P. Colinge, A. Kranti, R. Yan, I. Ferain, N. Dehdashti, Akhavan, P. Razavi, C. W. Lee, and R. Yu, C. A. Colinge, “A simulation comparison between junctionless and inversion-mode MuGFETs,” ECS Transactions., vol. 35, no. 5, pp.63-72, May. 2011.
[41] K. Jeon, W. Y. Loh, P. Patel, C. Y. Kang, J. Oh, A. Bowonder, C. Park, C. S. Park, C. Smith, P. Majhi, H. H. Tseng, R. Jammy, T. J. King. Liu, and C. Hu, “Si tunnel transistors with a novel silicided source and 46mV/dec swing,” 2010 Symposium on VLSI Technology Digest of Technical Papers, pp.121-122.
[42] H. C. Lin, K. L. Yeh, T. Y. Huang, R. G. Huang, and S. M. Sze, “Ambipolar Schottky-barrier TFTs,” IEEE T Electron Dev., vol. 49, no. 2, pp.264-270, Feb. 2002.
[43] J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water,” Appl. Phys. Lett., vol. 92, pp. 072104-1-072104-3, 2008.
[44] M. D. H. Chowdhury, M. Mativenga, J. G. Um, R. K. Mruthyunjaya, G. N. Heiler, T. J. Tredwell, and J. Jang, “Effect of SiO2 and SiO2/SiNx passivation on the stability of amorphous indium-gallium-zinc-oxide thin-film transistors under high humidity,” IEEE T Electron Dev., vol. 62, no. 3, pp.869-874, Mar. 2015.
[45] B. S. Shie, C. B. Chang, H. C. Chang, H. C. Lin, and T. Y. Huang, “Stability of InGaZnO thin-film transistors with Durimide passivation,” in Proc. IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Hsinchu, Taiwan, Jun. 2015, pp. 370-373.
[46] S. Song, W. K. Hong, S. S. Kwon, and T. Lee, “Passivation effects on ZnO nanowire field effect transistors under oxygen, ambient, and vacuum environments,” Appl. Phys. Lett., vol. 92, no. 26, pp. 263109-1-263109-3, Jun. 2008.
[47] A. Olziersky, P. Barquinha, A. Vila, L. Pereira, G. Goncalves, E. Fortunato, R. Martins, and J. R. Morante, “Insight on the SU-8 resist as passivation layer for transparent Ga2O3-In2O3-ZnO thin-film transistors,” J. Appl. Phys., vol. 108, no. 6, pp. 064505-1-064505-7, Sep. 2010.
[48] Y. J. Han, Y. J. Choi, I. T. Cho, S. H. Jin, J. H. Lee, and H. I Kwon, “Improvement of long-term durability and bias stress stability in p-type SnO thin-film transistors using a SU-8 passivation layer,” IEEE Electron Device Lett., vol. 35, no. 12, pp. 1260-1262, Dec. 2014.
[49] A. D. Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng., vol. 17, no. 6, pp. R81-R95, May. 2007.
[50] C. M. Chang (2017). Study on high performance amorphous indium tungsten oxide thin film transistors with low operation voltage. Unpublished master’s thesis, National Chiao Tung University, Hsinchu, Taiwan.
[51] S. J. Choi, J. W. Han, S. Kim, M. G. Jang, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, Y. C. Park, J. W. Kim, and Y. K. Choi, “Enhancement of program speed in dopant-segregated Schottky-barrier (DSSB) FinFET SONOS for NAND-type flash memory,” IEEE Electron Device Lett., vol. 30, no. 1, pp. 78-81, Jan. 2009.
[52] H. Oh, S. –M. Yoon, M. K. Ryu, C. –S. Hwang, S. Yang, and S. –H. K. Park, “Photon-accelerated negative bias instability involving subgap states creation in amorphous In-Ga-Zn-O thin film transistor,” Appl. Phys. Lett., vol. 97, no. 18, pp. 183502-1-183502-3, Nov. 2010.
[53] S. –Y. Huang, T. –C. Chang, M. –C. Chen, T. –C. Chen, F. –Y. Jian, Y. –C. Chen, H. –C. Huang, and D. –S. Gan, “Improvement in the bias stability of amorphous InGaZnO TFTs using an Al2O3 passivation layer,” Surf. Coat. Technol., vol. 231, pp.117-121, Sep. 2013.
[54] S. H. Ryu, Y. C. Park, M. Mativenga, D. H. Kang, and J. Jang, “Amorphous-InGaZnO4 thin-film transistors with damage-free back channel wet-etch process,” ECS Solid State Lett., vol. 1, no. 2, pp. Q17-Q19, Jan. 2012.
電子全文 電子全文(網際網路公開日期:20230924)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔