(3.237.20.246) 您好!臺灣時間:2021/04/16 07:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂子農
研究生(外文):Lu, Tzu-Nung
論文名稱:研製氮化鎵增強型元件及特性改良
論文名稱(外文):The Study of GaN Enhancement Mode Device Fabrication and Characteristic Improvements
指導教授:郭浩中郭浩中引用關係
指導教授(外文):Kuo, Hao-Chung
口試委員:洪瑞華李柏璁黃建璋
口試委員(外文):Horng, Ray-HuaLee, Po-TsungHuang, Jian-Jang
口試日期:2018-11-05
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:64
中文關鍵詞:氮化鎵高電子遷移率電晶體原子層沉積
外文關鍵詞:GaNHEMTALD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年節約能源的議題受到很大的重視,而在過去幾年氮化鎵功率元件已經被證實在節能上有很大的幫助,氮化鎵材料具有耐熱、高電子飽和速度、高崩潰電壓、高載子密度等特性,且電流密度高,功率轉換效率高,使元件尺寸可大幅縮小以達到節能需求,是市場上主要的發展方向。而因為介面缺陷產生的漏電,不僅影響元件本身的特性,更造成了能量的耗損,本篇論文中,我們分別改善了兩種不同方法製作增強型氮化鎵高電子遷移率電晶體的漏電特性。
在第三章中,我們改變了傳統以Cl2/BCl3來蝕刻p型氮化鎵的做法,選用CF4作為蝕刻氣體,在蝕刻過程中利用氟離子引入的深層能階來消除聚集在p-GaN表面的電洞,以達到降低漏電的效果,成功製作出汲極漏電(ID,off)為4.1×10-8 mA/mm,臨界電壓(Vth)為1.11 V,崩潰電壓為780 V的增強型元件。在第四章中,我們在閘極掘入製程後引入了退火以及電漿處理的步驟來修復蝕刻所造成的表面損傷以降低閘極漏電。當元件通道長度1μm時,量得臨界電壓值(Vth)為1.21 V,崩潰電壓為962 V,正偏壓下閘極漏電為10-7 mA/mm,比未經處理時降低了約8個數量級,並展現出良好的元件特性。
In recent years, the issue of energy conservation has received great attention. In the past few years, GaN power device have been proven to be very helpful in energy saving. GaN has many advantages such as heat resistance, high electron saturation speed, high breakdown voltage, and high carrier density, therefore, the devices have high current density and high power converson efficiency, so that the size can be greatly reduced to achieve energy saving requirements, which is the main development direction in the market.
The leakage caused by interface defects not only affects the characteristics of the device, but also causes energy loss. In this study, we have improved the leakage characteristics of two different methods for fabricating enhancement mode GaN HEMTs. Chapter 3 shows a low off-state drain leakage (4.1×10-8 mA/mm), high threshold voltage (1.11 V) and high breakdown voltage (780 V) E-mode p-GaN gate HEMT by novel fluorine treatment process. In chapter 4, annealing and ozone plasma treatment were introduced to the recessed gate HEMT process to recovery the surface damage cause by etching process, and the devices exhibit high threshold voltage (1.21 V), high breakdown voltage (962 V) and low forward bias gate leakage of 10-7 mA/mm, which reveal an impressive 8 orders of leakage reduction after the treatment.
Chapter 1 Introduction
1.1 Overview of Semiconductor Power Devices………………………………….1
1.2 Introduction of AlGaN/GaN HEMTs…………………………………………...….6
1.3 Enhancement Mode AlGaN/GaN HEMTs……………………...………………...12
1.4 Motivation………………………………………..………………………………13
1.5 Dissertation Organization……………………...……...………………………….14
1.6 References………………………………………..………………………………15
Chapter 2 Experimental Instrument
2.1 ABM Contact Aligner…………………………………………………………….18
2.2 Inductively Coupled Plasma-Reactive Ion Etching………….20
2.3 Ion Implanter……………………………………………………………………...22
2.4 Electron Beam Physical Vapor Deposition……………………………..24
2.5 Rapid Thermal Annealing..……………………………………………………….26
2.6 Atomic Layer Deposition…………………………………………..……………..28
2.7 Plasma-enhanced Chemical Vapor Deposition………………………..30
2.8 References…………………………………………………..……………………32
Chapter 3 Off-state Drain Current Improvement by CF4 Plasma Treatment for p-GaN Gate Enhancement Mode AlGaN/GaN HEMTs
3.1 Introduction and Literature Review………………………………………………33
3.1.1 Introduction…………………………………………………………………….33
3.1.2 Literature review..………………………………………………………………34
3.2 Experiment and Fabrication Process………………………………………...37
3.3 Results and Discussion……………………………..……………………………..39
3.3.1 Device DC I-V characteristics…………………………………………………..39
3.3.2 Leakage reduction by CF4-plasma treatment………………...41
3.4 Summary………………………………………………………………………….44
3.5 References…………………………………………..……………………………45
Chapter 4 Forward Bias Gate Leakage Improvement by UV Ozone Plasma Pre-treatment for Enhancement Mode Gate-recessed GaN HEMTs
4.1 Introduction and Literature Review………………………………………………47
4.1.1 Introduction…………………………………………………………………….47
4.1.2 Literature review..………………………………………………………………48
4.2 Experiment and Fabrication Process……………………………………...53
4.3 Results and Discussion……………………………..……………………………..55
4.3.1 XPS analysis for ozone plasma treatment………………….......………………..55
4.3.2 Leakage current for different treatment after gate recess…..……………..……..56
4.3.3 DC characteristics for recessed gate E-mode HEMTs……...…..……………….57
4.4 Summary…………………………………………………………………….……60
4.5 References…………………………………………..……………………………61
Chapter 5 Conclusion
5.1 Summary………………………………………………………..………………...62
5.2 Future Work…………………………………………………….………………...63
[1.1] Jerry L. Hudgins, Grigory S. Simin, Enrico Santi, and M. Asif Khan, “An Assessment of Wide Bandgap Semiconductors for Power Devices,” IEEE Transaction on Power Electronics, Vol. 18, No. 3, pp. 907-914, 2003.
[1.2] B. J. Baliga, "Power semiconductor device figure of merit for high-frequency
applications," IEEE Electron Device Letters, Vol. 10, No. 10, pp. 455-457, Oct 1989.
[1.3] M. Shur and R. Davis, GaN-based materials and devices: growth, fabrication,
characterization and performance. Singapore: World Scientific, 2004.
[1.4] Y. Taniyasu and M. Kasu, “Improved Emission Efficiency of 210-nm Deep-ultraviolet Aluminum Nitride Light-emitting Diode,” NTT Technical Review, Special Feature:Front-line Materials Research.
[1.5] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, R. Dimitrov, L. Wittmer, and M. Stutzmann,W. Rieger and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, MAR 1999.
[1.6] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V Nitrides," Physical Review B, vol. 56, pp. R10024-R10027, Oct 1997.
[1.7] He Xiao-Guang (何晓光), Zhao De-Gang (赵德刚) and Jiang De-Sheng (江德生), “Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression*” Chin. Phys. B Vol. 24, No. 6 (2015) 067301.
[1.8] M. Shur, G. Simin, S. Rumyantsev, R. Jain, and R. Gaska, “Chapter 13: Insulated gate nitride-based field effect transistors,” in Fundamentals of III-V Semiconductor MOSFETs. Springer, 2010, pp. 379-422.
[1.9] T. Oka and T. Nozawa, “AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 668–670, Jul. 2008.
[1.10] Liang-Yu Su, Finella Lee, and Jian Jang Huang, Senior Member, IEEE, “Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer,” IEEE Transactions on Electron Devices, Vol. 61, No. 2, Feb. 2014.
[1.11] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, et al., “Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3393–3399, Dec. 2007.
[1.12] O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, and J. Wurfl,“Normally-off AlGaN/GaN HFET with p-type GaN gate and AlGaN buffer,” in Proc. 22nd Int. Symp. Power Semicond., Jun. 2010, pp. 347–350.
[1.13] H. Chonan, T. Ide, X. Q. Shen, and M. Shimizu, “Effect of hole injection in AlGaN/GaN HEMT with GIT structure by numerical simulation,” Phys. Status Solidi C, vol. 9, nos. 3–4, pp. 847–850, Jan. 2012.
[1.14] Finella Lee, Liang-Yu Su, Chih-Hao Wang, Yuh-Renn Wu, and Jianjang Huang, Senior Member, IEEE, “Impact of Gate Metal on the Performance of p-GaN/AlGaN/GaN High Electron Mobility Transistors,” IEEE Electron Device Letters, Vol. 36, No. 3, Mar. 2015.
[1.15] Yong Cai, Yugang Zhou, Kei May Lau, Fellow, IEEE, and Kevin J. Chen, Member, IEEE, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode,” IEEE Transactions on Electron Devices, Vol. 53, No. 9, Sept. 2006.
[1.16] Yong Cai, Yugang Zhou, Kevin J. Chen, Member, IEEE, and Kei May Lau, Fellow, IEEE, “High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment,” IEEE Electron Device Letters, Vol. 26, No. 7, July 2005.
[1.17] Kevin J. Chen, L. Yuan, M. J. Wang, H. Chen, S. Huang, Q. Zhou, C. Zhou, B. K. Li, J. N. Wang, “Physics of fluorine plasma ion implantation for GaN normally-off HEMT technology,” 2011 International Electron Devices Meeting.
[1.18] Ruonan Wang, Yong Cai, Wilson Tang, Kei May Lau, Fellow, IEEE, and Kevin J. Chen, Member, IEEE, “Planar integration of E/D-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment,” IEEE Electron Device Letters, Vol. 27, No. 8, Aug. 2006.
[1.19] K. Ota, K. Endo, Y. Okamoto, Y. Ando, H. Miyamoto and H. Shimawaki, “A normally-off GaN FET with high threshold voltage uniformity using a novel piezo neutralization technique,” 2009 IEEE International Electron Devices Meeting (IEDM)
[1.20] M Ishida, M Kuroda, T Ueda and T Tanaka, “Nonpolar AlGaN/GaN HFETs with a normally off operation,” Semicond. Sci. Technol. 27 (2012) 024019 (6pp)
[1.21] B. Liu, Y. W. Lu, G. R. Jin, Y. Zhao, X. L. Wang, Q. S. Zhu, Z. G. Wang, "Surface roughness scattering in two dimensional electron gas channel", Applied Physics Letters, 97, 262111 (2010).
[2.1] 莊達人, ”VLSI製造技術”, 高立圖書有限公司, 2006
[2.2] Michael Quirk, Julian Serda, “Semiconductor Manufacturing Technology”, Prentice Hall, 2001
[3.1] G. Greco, F. Iucolano, and F. Roccaforte, “Review of technology for normally-off HEMTs with p-GaN gate,” Mater. Sci. Semicond. Process., to be published, doi: 10.1016/j.mssp.2017.09.027.
[3.2] X. Hu, G. Simin, J. Yang, M. Asif Khan, R. Gaska, and M.S. Shur, “Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate,” Electronics Letters, Vol. 36, No. 8, Apr. 2000.
[3.3] T. Fujii, S. Nakamura, K. Mizuno, R. Nega, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “High drain current and low on resistance normally‐off‐mode AlGaN/GaN junction HFETs with a p‐type GaN gate contact,” phys. stat. sol. (c) 5, No. 6, 1906–1909 (2008) / DOI 10.1002/pssc.200778421
[3.4] Liang-Yu Su, Finella Lee, and Jian Jang Huang, Senior Member, IEEE, “Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer,” IEEE Transactions on Electron Devices, Vol. 61, No. 2, Feb. 2014.
[3.5] R. Hao, K. Fu, G. Yu, W. Li, J. Yuan, L. Song, Z. Zhang, S. Sun, X. Li, Y. Cai, X. Zhang, and B. Zhang, “Normally-off p-GaN/AlGaN/GaN high electron mobility transistors using hydrogen plasma treatment,” Appl. Phys. Lett. 109, 152106 (2016)
[3.6] M. Meneghini, O. Hilt, J. Wuerfl and G. Meneghesso, “Technology and Reliability of Normally-Off GaN HEMTs with p-Type Gate,” Energies 2017, 10(2), 153.
[3.7] Y. Xiang, T. Yu, C. Ji, Y. Cheng, X. Yang, X. Kang, B. Shen and G. Zhang, “Fluorine plasma treatment induced deep level traps and their effect on current transportation in Al0.83In0.17N/AlN/GaN Schottky barrier diodes,” Journal of Physics D: Applied Physics. 49 (2016) 305103 (7pp).
[3.8] I. Hwang, J. Oh, H.S. Choi, J. Kim, H. Choi, J. Kim, S. Chong, J. Shin, and U-In Chung, “Source-Connected p-GaN Gate HEMTs for Increased Threshold Voltage,” IEEE Electron Device Letters, Vol. 34, No. 5, May 2013.
[3.9] T.F. Chang, T.C. Hsiao, C.F. Huang, W.H. Kuo, S.F. Lin, G.S. Samudra, and Y.C. Liang, “Phenomenon of Drain Current Instability on p-GaN Gate AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices Vol. 62, No. 2, Feb. 2015.
[3.10] N.E. Posthuma, S. You, H. Liang, N. Ronchi, X. Kang, D. Wellekens, Y.N. Saripalli, S. Decoutere, “Impact of Mg out-diffusion and activation on the p-GaN gate HEMT device performance,” 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD).
[4.1] S. Vitanov, V. Palankovski, S. Maroldt, and R. Quay, “A Simulation Study of Enhancement-Mode AlGaN/GaN HEMTs with Recessed Gates,” European Workshop on Heterostructure Technology (HETECH), At Guenzburg/Ulm, Volume: HETECH 2009 Book of Abstracts.
[4.2] W.B. Lanford, T. Tanaka, Y. Otoki and I. Adesida, “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” Electronics letters, Vol. 41, No. 7, March 2005.
[4.3] Woojin Choi, Ogyun Seok, Hojin Ryu, Ho-Young Cha, and Kwang-Seok Seo, “High-Voltage and Low-Leakage-Current Gate Recessed Normally-Off GaN MIS-HEMTs With Dual Gate Insulator Employing PEALD-SiNx/RF-Sputtered-HfO2,” IEEE Electron Device Letters, Vol. 35, No. 2, Feb. 2014.
[4.4] K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH Treatment on Device Performance of Normally Off Al2O3/GaN MOSFET”, IEEE Electron Device Letters, Vol. 32, No. 10, pp. 1376-1378, 2011.
[4.5] Yen-Ku Lin, Shuichi Noda, Ruey-Bor Lee, Chia-Ching Huang, Quang Ho Luc, Seiji Samukawa, Senior Member, IEEE, and Edward Yi Chang, Fellow, IEEE, “Enhancement-mode AlGaN/GaN MIS-HEMTs with low threshold voltage hysteresis using damage-free neutral beam etched gate recess,” 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO).
[4.6] Min-Han Mi, Xiao-Hua Ma, Ling Yang, Bin-Hou, Jie-Jie Zhu, Yun-Long He, Meng Zhang, Sheng Wu, and Yue Hao, “90 nm gate length enhancement-mode AlGaN/GaN HEMTs with plasma oxidation technology for high-frequency application,” Appl. Phys. Lett. 111, 173502 (2017).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔