跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/29 15:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐證甯
研究生(外文):Hsu, Zheng-Ning
論文名稱:深藍光純相位矽基液晶空間光調制器以多重曝光方法於無光罩全像微影應用
論文名稱(外文):Deep-blue light phase-only LCoS with multiple exposure method for mask-less lithography
指導教授:陳皇銘陳政寰陳政寰引用關係
指導教授(外文):Chen, Huang-Ming PhilipChen, Cheng-Huan
口試委員:李柏璁田仲豪林宏洲
口試委員(外文):Lee, Po-TsungTien, Chung-HaoLin, Hong-Cheu
口試日期:2018-11-22
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:55
中文關鍵詞:矽基液晶405 nm無光罩曝光
外文關鍵詞:LCoSDeep-blue LightMaskless Lithography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
光學微影技術被廣泛使用於科學研究與工業應用,更是半導體製程中重要的一環。本研究使用一套深藍光(405 nm)的離軸光路系統,入射至實驗室自製之高解析度純相位矽基液晶微型面板(Liquid Crystal On Silicon, LCoS),並藉由液晶空間光調製器控制雷射光束在空間上的光強度分布,將欲微影之任意圖案投射至負型光阻上,最後顯影出目標圖案。
本實驗透過改變光路、校正成像面光強度和更換不同的演算法提升任意重構圖形經由無光罩光學微影系統轉移至光阻的結構品質,其包含兩部分,繞射成像面上整體影像光強度分布的均勻性,以及任意重構圖形縮小時其餘繞射階數的干擾問題。實驗結果發現經過sinc函數修正可以大幅減少圖案化光阻的不均勻,約改善43 %的方均根誤差值。而GS演算法光強度較強在重建影像面較小且能量集中的情況下較難以曝光出細微的輪廓圖案,換為MRAF演算法並時序性投影則可改善7 %的方均根誤差值。最後微影出交通大學校徽圖案,在1.2 μm膜厚的光阻下可達最小線寬約為25 μm。
Photolithography has been widely utilized in scientific research and industrial applications. In this study, an off-axis illumination system using deep-blue light source (405 nm) with 1080p phase-only liquid crystal on silicon (LCoS) for mask-less lithography process is presented. The spatial light intensity distribution is controlled by the liquid crystal spatial light modulator, and arbitrary pattern to be photolithographic is projected onto the negative photoresist.
The imaging quality that generated based on the computer-generated hologram (CGH) followed Iterative Fourier Transform Algorithm and the mixed region amplitude freedom algorithm was first evaluated. The diffraction efficiency of the projection and the lithography results were appraised whether the algorithm is suitable for lithography applications by analyzing the difference between the profile of the resistive pattern and the target image. Finally, the lithography result of NCTU’s emblem pattern was obtained with a minimum line width of 25 μm at 1.2 μm-thick photoresist film.
第一章 序論 1
1.1 繞射光學元件概述 1
1.2 電腦全像片簡介 1
1.3 液晶簡介 3
1.3.1 液晶相 3
1.3.2 向列型液晶 4
1.3.3 單光軸液晶光學特性 5
1.4 光學微影 7
1.5 研究動機 7
1.6 論文架構 9
第二章 電腦全像片的理論與模擬 10
2.1 遠場繞射理論推導 10
2.2 LCoS-SLM 遠場繞射成像 14
2.3 遞迴傅立葉演算法 16
2.4 混和區域振幅自由度演算法 19
2.5 演算法模擬與比較 20
第三章 製程設備與量測系統 26
3.1 製程設備 26
3.2 分析儀器 28
3.2.1 光譜儀 28
3.2.2 偏光學顯微鏡 30
3.2.3 影像感應器 31
3.2.4 薄膜厚度輪廓測量儀 31
3.3 量測光學系統 32
第四章 矽基液晶相位調制器之特性 33
4.1 LCoS-SLM簡介 33
4.2 LCoS製程步驟 34
4.2.1 清洗基板 34
4.2.2 旋轉塗佈配向層 35
4.2.3 配向研磨 35
4.2.4 後段液晶盒組裝製程 36
4.3 純相位矽基液晶面板之特性量測 37
4.3.1 LCoS均勻度 38
4.3.2 驅動面板相位線性化校正 39
4.3.3 SLM反應時間 40
第五章 成像及顯影結果 42
5.1 全像曝光系統 42
5.2 成像結果之分析 43
5.3 光學微影步驟 47
5.4 光學微影結果的分析與比較 47
第六章 結論與未來展望 52
6.1 結論 52
6.2 未來展望 52
參考文獻 54
[1] Wen, F.J. and P.S. Chung. 2D optical beam splitter using diffractive optical elements (DOE). in Asia-Pacific Optical Communications. 2006. SPIE.
[2] Huang, Z., Z. Hao, and L. Zhu. Axial multifocal binary-phase zone plate for high numerical aperture focusing. 2016. SPIE.
[3] Lin, H., et al. Design of homogeneous laser-line-beam generators. 2016. SPIE.
[4] Gabor, D., A New Microscopic Principle. Nature, 1948. 161: p. 777.
[5] Brown, B.R. and A.W. Lohmann, Complex Spatial Filtering with Binary Masks. Applied Optics, 1966. 5(6): p. 967-969.
[6] Leseberg, D. and C. Frère, Computer-generated holograms of 3-D objects composed of tilted planar segments. Applied Optics, 1988. 27(14): p. 3020-3024.
[7] Leseberg, D., Computer-generated three-dimensional image holograms. Applied Optics, 1992. 31(2): p. 223-229.
[8] Su, P., et al., Fast Computer-Generated Hologram Generation Method for Three-Dimensional Point Cloud Model. Journal of Display Technology, 2016. 12(12): p. 1688-1694.
[9] Reicherter, M., et al., Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Optics Letters, 1999. 24(9): p. 608-610.
[10] Sinclair, G., et al., Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping. Optics Express, 2004. 12(8): p. 1665-1670.
[11] Tao, R., Y. Xin, and Y. Wang, Double image encryption based on random phase encoding in the fractional Fourier domain. Optics Express, 2007. 15(24): p. 16067-16079.
[12] Reinitzer, F., Beiträge zur Kenntniss des Cholesterins. Monatshefte für Chemie - Chemical Monthly, 1888. 9(1): p. 421-441.
[13] Yang, D.K., Fundamentals of Liquid Crystal Devices. 2014: Wiley.
[14] Yeh, P. and C. Gu, Optics of Liquid Crystal Displays. 2010: Wiley.
[15] Ito, T. and S. Okazaki, Pushing the limits of lithography. Nature, 2000. 406: p. 1027.
[16] Holger, B. and G. Claudia, Polymer microfabrication methods for microfluidic analytical applications. ELECTROPHORESIS, 2000. 21(1): p. 12-26.
[17] Yoonkwang, N., K. Minseok, and K. Taesung, Fabricating a multi-level barrier-integrated microfluidic device using grey-scale photolithography. Journal of Micromechanics and Microengineering, 2013. 23(10): p. 105015.
[18] Tumbleston, J.R., et al., Continuous liquid interface production of 3D objects. Science, 2015. 347(6228): p. 1349-1352.
[19] Turtaev, S., et al., Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Optics Express, 2017. 25(24): p. 29874-29884.
[20] Damberg, G., et al., High brightness HDR projection using dynamic phase modulation, in ACM SIGGRAPH 2015 Emerging Technologies. 2015, ACM: Los Angeles, California. p. 1-1.
[21] Chang, W.-T., et al., P-157: Novel Deep-blue Light Phase-only LCoS 1080p Panel for Maskless Holographic Etching Optical System. SID Symposium Digest of Technical Papers, 2017. 48(1): p. 1873-1875.
[22] Goodman, J., Introduction to Fourier optics.
[23] Lesem, L.B., P.M. Hirsch, and J.A. Jordan, The Kinoform: A New Wavefront Reconstruction Device. IBM Journal of Research and Development, 1969. 13(2): p. 150-155.
[24] Gerchberg, R.W. and A. Saxton W. O, A practical algorithm for the determination of phase from image and diffraction plane pictures. Vol. 35. 1971. 237-250.
[25] Pasienski, M. and B. DeMarco, A high-accuracy algorithm for designing arbitrary holographic atom traps. Optics Express, 2008. 16(3): p. 2176-2190.
[26] McWilliam, R., et al., High-contrast pattern reconstructions using a phase-seeded point CGH method. Applied Optics, 2016. 55(7): p. 1703-1712.
[27] Koo, J.B., et al., Effect of UV/ozone treatment on hysteresis of pentacene thin-film transistor with polymer gate dielectric. Solid-State Electronics, 2009. 53(6): p. 621-625.
[28] Wu, J.-S., Light Stability of Liquid Crystal Devices in Deep Blue to UV region, in Institute of Lighting and Energy Photonics. 2017, National Chiao Tung University: Taiwan, Republic of China.
[29] Harm, W., et al., Tilt-effect of holograms and images displayed on a spatial light modulator. Optics Express, 2015. 23(23): p. 30497-30511.
[30] Jenness, N.J., et al., Three-dimensional parallel holographic micropatterning using a spatial light modulator. Optics Express, 2008. 16(20): p. 15942-15948.
[31] Bay, C., et al., Maskless photolithography via holographic optical projection. Optics Letters, 2010. 35(13): p. 2230-2232.
[32] Jenness, N.J., et al., A versatile diffractive maskless lithography for single-shot and serial microfabrication. Optics Express, 2010. 18(11): p. 11754-11762.
[33] Kuan-Hsu Fan, C., W. Shin-Tson, and C. Shu-Hsia, Fringing Field Effect of the Liquid-Crystal-on-Silicon Devices. Japanese Journal of Applied Physics, 2002. 41(7R): p. 4577.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top