(3.234.221.67) 您好!臺灣時間:2021/04/11 16:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾建峰
研究生(外文):Tseng, Chien-Feng
論文名稱:增強波跟蹤控制型降壓電源轉換器的輕載效率
論文名稱(外文):Light-Load Efficiency Enhancement in wave tracking control DC-DC Buck Converter
指導教授:陳科宏陳科宏引用關係陳宏明陳宏明引用關係
指導教授(外文):Chen, Ke-HorngChen, Hung-Ming
口試委員:王清松黃立仁陳科宏陳宏明
口試委員(外文):Wang, Ching-SungHuang, Li-RenChen, Ke-HorngChen, Hung-Ming
口試日期:2018-12-04
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院電子與光電學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:50
中文關鍵詞:固定導通時間控制虛擬波跟蹤技術等效串連阻抗
外文關鍵詞:Conventional constant-on-time (COT) controlequivalent series resistance (ESR)pseudo wave tracking techniquehigh efficiency wave tracking control buck converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在虛擬波跟蹤技術可以減少使用低等效串聯電阻的傳統固定導通時間控制降壓轉換器產生的直流偏移電壓量,用於改善輸出電壓的精準值。此外這種技術在負載變化時消除了輸出電壓與電感電流之間相反的趨勢來達到快速的暫態響應,並且在負載由輕載到重載和重載到輕載時分別延長了導通時間和非導通時間。不幸的是,當降壓轉換器操作在不連續導通模式時,隨著電感電流的上升,大幅度地增加電感的消耗以及導通的消耗盡而降低輕載的效率。在本論文中提出了改善輕載效率波追蹤型固定導通時間的降壓電源轉換器,輕載效率可以從52.7%提升到70.12%。
Constant-on-time (COT) control with an extra current feedback in convertional buck converter has the disadvantage is output regulation accuracy is greatly deteriorated by its DC offset voltage, and the opposite of reaction between ouput voltage and extra current current feedback signal deteriorates transient response. In wave tracking technique in constant on time (COT) control DC-DC buck converter has been reducing load-dependent DC offset voltage for load regulation, and also improves instantly opposite reaction between ouput voltage and inductor current. Unfortunately, the disadvantage for this technique is poor power efficiency at light load. This dissertation presents a high light-load efficiency wave tracking control buck converter with inductor current detector. The power efficiency gets greatly improvement from 52.7% to 70.12%.
Contents
摘 要 i
ABSTRACT ii
誌 謝 iii
Contents iv
Figure Captions vi
Table Captions viii
Chapter 1 Introduction 1
1.1 Power Management System 1
1.2 Classification of Voltage Regulators 2
1.2.1 Linear Regulator 2
1.2.2 Charge Pump 3
1.2.3 Switching Regulator 4
1.2.4 Comparison 6
Chapter 2 Basic Knowledge of Ripple-Based Control 7
2.1 Topology of Voltage-Ripple-based Control 7
2.1.1 Hysteretic Control 8
2.1.2 Constant On-time Control 10
2.1.3 Constant Off-time Control 11
2.1.4 Comparison 13
2.2 Motivation and Thesis Organization 15
Chapter 3 Stability Criteria of Constant On-Time buck converter and previous technique 16
3.1 The criteria of Stability in Conventional Constant On-Time Control 16
3.2 Additional Ramp in Constant On-Time Control 18
3.3 Additional Current Feedback Path in Constant On-Time Control 20
Chapter 4 The Issues of Additional Current Feedback Path and Previous Technique 23
4.1 Analyzes ACFP Output Voltage Inaccuracy Issue and Transient Response 23
4.1.1 Analysis of DC Offset in Additional Current Feedback Path 23
4.1.2 Analysis of transient response in Additional Current Feedback Path 27
4.2 Wave Tracking Technique for DC Offset Cancellation 28
4.3 Wave Tracking Technique For Transient Enhancement 30
4.4 Analysis of Power Loss and Efficiency in DC-DC buck converter 33
4.4.1 Quiescent Loss 33
4.4.2 MOSFET Switching Loss 34
4.4.3 MOSFET Conduction Loss 35
4.4.4 Inductor Conduction Loss 35
4.4.5 Efficiency 36
4.5 Proposed Inductor Current Clamper at Light-Load 37
Chapter 5 Circuit implementation 40
5.1 The Current Clamper for Limiting Inductor Current 40
Chapter 6 Simulation Result 42
6.1 Specification 42
6.2 Steady-State and Inductor Current Clamper 43
6.3 Power Efficiency 45
6.4 Comparison with Other Techniques 46
Chapter 7 Conclusion and Future work 47
7.1 Conclusion 47
7.2 Future work 47
[1] Y.-J Park, et al., “A Design of a 92.4% Efficiency Triple Mode Control DC–DC Buck Converter With Low Power Retention Mode and Adaptive Zero Current Detector for IoT/Wearable Applications,” in IEEE Transactions on Power Electronics, pp. 6946-6958, Sept. 2017.
[2] J.-C Tsai, et al., “Dual modulation technique for high efficiency in high switching buck converters over a wide load range,” in IEEE International Symposium on Circuits and Systems, pp. 3709–3712, 2010.
[3] P.-H Chen, et al., “A 50 nW-to-10 mW Output Power Tri-Mode Digital Buck Converter With Self-Tracking Zero Current Detection for Photovoltaic Energy Harvesting,” in IEEE Journal of Solid-State Circuits, pp. 523–532, Feb. 2016.
[4] S.-Y Kim,et al.,“ Design of a High Efficiency DC–DC Buck Converter With Two-Step Digital PWM and Low Power Self-Tracking Zero Current Detector for IoT Applications,” in IEEE Transactions on Power Electronics., pp. 1428-1439, Feb. 2018.
[5] Feng Su,et al.,“ Digitally assisted quasi-V2 hysteretic buck converter with fixed frequency and without using large-ESR capacitor,” in 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, pp. 446-448, 2009.
[6] S.-H. Lee, et al, “A 0.518 mm2 quasi-current-mode hysteretic buck DC-DC converter with 3μs load transient response in 0.35 μm BCDMOS,” in Proc.IEEE ISSCC Dig. Tech. Papers, pp. 214-215, 2015.
[7] C. Song, “Accuracy Analysis of Constant-On Current-Mode DC-DC Converters for Powering Microprocessors,” in proc. IEEE APEC, pp. 97–101, Feb. 2009.
[8] F. Su,et al.,“Digitally assisted quasi-V2 hysteretic buck converter with fixed frequency and without using large-ESR capacitor,” in IEEE ISSCC Dig. Tech. Papers, pp. 446–447, Feb. 2009.
[9] Y.-C. Lin,et al.,“A ripple-based constant on-time control with virtual inductor current and offset cancellation for DC power converters,” IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4301-4310, Oct. 2012.
[10] Y. Y. Mai,et al.,“A constant frequency output-ripple-voltage-based buck converter without using large ESR capacitor,” IEEE Trans. Circuits Syst. II, Exp. Brief, vol. 55, no. 8, pp. 748–752, Aug. 2008.


[11] P.Y. Wu,et al.,“Area-and power-efficient monolithic buckconverters with pseudo-type III compensation,”IEEE J. Solid-State Circuits,vol. 45, no.8, pp. 1446-1455, Aug. 2010.
[12] W.-W. Chen,et al.,“A novel quick response of RBCOT with VIC ripple for buck converter,”IEEE J. Solid-State Circuits, vol.28, no. 9, pp. 4299-4307, Sep., 2013.
[13] Y.-H. Lee,et al.,“Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,” IEEET rans. Power Electron., vol.25, no.4, pp.829-838, 2010.
[14] J. Sun, “Characterization and performance comparison of ripple-based control methods for voltage regulator modules,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 346–353, Mar. 2006.
[15] R. Redl, “Ripple regulator review,” Prof. Educ. Semin. S.2, IEEE APEC, 2008.
[16] R. Redl and G. Reizik, “Switched noise filter for the buck converter using the output ripple as the PWM ramp,” in Proc. IEEE APEC, pp. 918–924, 2005.
[17] R. Redl and T. Schiff, “A new family of enhanced ripple regulators for power-management applications,” presented at the PCIM Eur., Nuremburg, Germany, 2008.
[18] R. Redl and J. Sun, “Ripple-based control of switching regulators—an overview” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669–2680, Dec. 2009.
[19] S. Tian and F. -C. Lee, “Small-signal analysis and optimal design of external ramp for constant on-time V2 control with multilayer ceramic caps” IEEE Trans. Power Electron., vol. 29, no. 8, Aug. 2014.
[20] T. Qian, “Subharmonic analysis for buck converters with constant on-time control and ramp compensation” IEEE Trans. Power Electron., vol. 60, no. 5, May 2013.
[21] C.-J.Chen,D.Chen,C.-W.Tseng,C.-T.Tseng,Y.-W.Chang,and K.-C.Wang, “A novel ripple-based constant on-time control with virtual inductor current ripple for Buck converter with ceramic output capacitors,” in Proc. IEEE APEC, pp. 1488–1493, 2011.
[22] J. Wang, J. Xu, and B. Bao “Analysis of PulseBursting Phenomenon inConstant-On-Time-Controlled Buck Converter,”IEEE Trans. Power Electron., vol. 58, no. 12, Dec. 2011.
[23] W.-C. Chen, C.-S. Wang, Y.-P. Su, Y.-H. Lee, C.-C. Lin, and K.-H. Chen, “Reduction of Equivalent Series Inductor Effect in Delay-Ripple Reshaped Constant On-time Control for Buck Converter with Multi-layer Ceramic Capacitors,” IEEE Trans. Power Electronics, vol. 28, no. 5, pp. 2366-2376, May. 2013.
[24] H.P. Forghani-zadeh, and G.A. Rincon-Mora, “Current-Sensing Techniques for DC-DC Converters” IEEE MWSCAS, vol. 2, pp. 577-580, Aug. 2002.
[25]L. Jia and Y.-F. Liu,“Voltage-Based Charge Balance Controller Suitable for Both Digital and Analog Implementations” IEEE Trans. Power Electronics, vol. 28, no. 2, pp. 930-944, Feb. 2013.
[26] “TPS53513 1.5-V to 18-V (4.5-V to 25-V Bias) Input, 8-A Single Synchronous Step-Down SWIFT™ Converter,” Texas Instruments Dec 2014.
[27] E. Sackinger and W. Guggenbuhl, “A versatile building block: The CMOS differential difference amplifier,” IEEE J. Solid-State Circuits, vol. 22, no. 2, pp. 287–294, Apr. 1987.
[28] “L. Cheng, J. Ni, Y. Qian, M. Zhou, W.-H. Ki, B. Y. Liu, G. Li, and Z. Hong, Member, IEEE “On-Chip Compensated Wide Output Range Boost Converter with Fixed-Frequency Adaptive Off-Time Control for LED Driver Applications,” IEEE Trans. Power Electronics, vol. 30, no. 4, Apr. 2015.
[29] Y.-C. Lin, et al., “A ripple-based constant on-time control with virtual inductor current and offset cancellation for DC power converters,” IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4301-4310, Oct. 2012.
[30] B. Sahu and G. A. Rincon-Mora, "An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control," IEEE Trans.Circuits Syst. I, Reg. Papers, vol. 54, No. 2, pp.312 - 321, Fe
電子全文 電子全文(網際網路公開日期:20231220)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔