跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 07:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:白詠民
研究生(外文):Pai, Yung-min
論文名稱:提昇光取出效率於氮化鋁鎵深紫外光發光二極體之研究
論文名稱(外文):Study of Enhancing the Light-Extraction Efficiency of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes
指導教授:郭浩中郭浩中引用關係陳政寰陳政寰引用關係
指導教授(外文):Kuo, Hao-ChungChen, Cheng-Huan
口試委員:林建中李柏璁葉志庭韓斌孫家偉陳隆建黃建璋
口試委員(外文):Lin, Chien-ChungLee, Po-TsungYe, Zhi-TingPin, HanSun, Chia-WeiChen, Lung-ChienHuang, JianJang
口試日期:2019-03-18
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:89
中文關鍵詞:深紫外光發光二極體奈米粒子鋁反射側壁聚二甲基矽氧烷
外文關鍵詞:Deep UltravioletLEDNanoparticleAl cavityPDMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract iii
誌謝 v
List of Figure xi
List of Table xvi
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Light-Emitting Diode 2
1.3 What is Ultraviolet light? 4
1.4 Ultraviolet LED VS Ultraviolet Lamp 6
1.5 UV LED Application 7
1.6 UV LED Market 8
Figure caption 10
Reference 15
Chapter 2 Theoretical Backgrounds 17
2.1 Principle of LED 17
2.2 Radiometry and Photometry 22
2.3 Structure of In/AlGaN-Based UV LED 23
2.4 Ray tracing 24
Figure caption 26
Table Caption 28
Reference 29
Chapter 3 Experimental setup 30
3.1 Fabrication machine 30
3.1.1 Flip chip direct bonding machine system 30
3.1.2 LED Glue Dispenser system 30
3.1.3 KURABO Planetary Mixer 31
3.1.4 Disco wafer cutting system 31
3-2 Measured Instrument 32
3.2.1 The external image of HITACHI U4100 system 32
3.2.2 Isuzu Optics SLM-20 integrating sphere 32
3.2.3 The scanning electron microscope (SEM): JSM-7000F 33
3.2.4 Angular measuring system from Instrument Systems 34
3.2.5 infrared thermal imager 35
3.3 Optical simulation 36
3.3.1 Light Tools 36
Figure caption 38
Reference 43
Chapter 4 Enhancing the Light-Extraction Efficiency of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes by Optimizing the Diameter and Tilt of the Aluminum Sidewall 44
4.1 Introduction 44
4.2 Motivation & Challengs 46
4.3 Optical Design of DUV-LED Reflector Inclined Plane 46
4.4 Experiment 49
4.5 Results and Discussion 50
4.6 Conclusions 51
Figure Caption 52
Table Caption 59
Reference…….……………………………………………… ………….60
Chapter 5 Nanoparticle-Doped Polydimethylsiloxane Fluid Enhances the Optical Performance of AlGaN-Based Deep-Ultraviolet-Light-Emitting Diodes 64
5.1 Introduction 64
5.2 Motivation & Challenges 65
5.3 Experiment 66
5.4 Results and Discussion 68
5.5 Conclusions 73
Figure Caption 75
Table Caption 81
Reference 82
Chapter 6 Conclusion 85
Publication List 85
Journal Papers 87
Internal Conference Papers 88
Curriculum Vitae 89
1. [1] https://wcs.webofknowledge.com/
2. [2] S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. J. N. p. Nakamura, "Prospects for LED lighting," vol. 3, no. 4, p. 180, 2009.
3. [3] E. F. Schubert and J. K. J. S. Kim, "Solid-state light sources getting smart," vol. 308, no. 5726, pp. 1274-1278, 2005.
4. [4] H. C. Chen et al., "A novel randomly textured phosphor structure for highly efficient white light-emitting diodes," vol. 7, no. 1, p. 188, 2012.
5. [5] B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. J. J. o. T. E. S. Do, "Selecting morphology of Y3Al5O12: Ce3+ phosphors for minimizing scattering loss in the pc-LED package," vol. 159, no. 4, pp. J96-J106, 2012.
6. [6] K. Chen et al., "Effect of the thermal characteristics of phosphor for the conformal and remote structures in white light-emitting diodes," vol. 5, no. 5, pp. 8200508-8200508, 2013.
7. [7] J. K. Kim and E. F. J. O. E. Schubert, "Transcending the replacement paradigm of solid-state lighting," vol. 16, no. 26, pp. 21835-21842, 2008.
8. [8] E. F. Schubert, Light-emitting diodes. E. Fred Schubert, 2018.
9. [9] S. J. s. Nakamura, "The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes," vol. 281, no. 5379, pp. 956-961, 1998.
10. [10] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. J. A. P. L. Kurimoto, "Optical bandgap energy of wurtzite InN," vol. 81, no. 7, pp. 1246-1248, 2002.
11. [11] J. Pankove, E. Miller, and J. J. J. o. L. Berkeyheiser, "GaN blue light-emitting diodes," vol. 5, no. 1, pp. 84-86, 1972.
12. [12] H. Amano, N. Sawaki, I. Akasaki, and Y. J. A. P. L. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," vol. 48, no. 5, pp. 353-355, 1986.
13. [13] S. J. J. J. o. A. P. Nakamura, "GaN growth using GaN buffer layer," vol. 30, no. 10A, p. L1705, 1991.
14. [14] S. Nakamura, T. Mukai, M. Senoh, and N. J. J. J. o. A. P. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films," vol. 31, no. 2B, p. L139, 1992.
15. [15] S. Nakamura and T. J. J. j. o. a. p. Mukai, "High-quality InGaN films grown on GaN films," vol. 31, no. 10B, p. L1457, 1992.
16. [16] S. Nakamura, M. Senoh, N. Iwasa, S.-i. Nagahama, T. Yamada, and T. J. J. J. o. A. P. Mukai, "Superbright green InGaN single-quantum-well-structure light-emitting diodes," vol. 34, no. 10B, p. L1332, 1995.
17. [17] S. Nakamura, T. Mukai, and M. J. A. P. L. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," vol. 64, no. 13, pp. 1687-1689, 1994.
18. [18] Available http://www.wyckomaruv.com/UVTechnology.html
19. [19] Available https://www.spacewx.com/pdf/SET_21348_2004.pdf
20. [20] Y. Muramoto, M. Kimura, S. J. S. S. Nouda, and Technology, "Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp," vol. 29, no. 8, p. 084004, 2014.

21. Reference
22. [1] B. E. Saleh, M. C. J. W. S. i. P. Teich, and W. Applied Optics, "Fundamentals of photonics. 2007," vol. 10, p. 0471213748.
23. [2] S. C. Allen and A. J. J. A. P. L. Steckl, "A nearly ideal phosphor-converted white light-emitting diode," vol. 92, no. 14, p. 128, 2008.
24. [3] S.-W. Fan, A. K. Srivastava, and V. P. J. A. P. L. Dravid, "UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO," vol. 95, no. 14, p. 142106, 2009.
25. [4] N. Ohta and A. Robertson, Colorimetry: fundamentals and applications. John Wiley & Sons, 2006.
26. [5] S. O. Kasap and R. K. Sinha, Optoelectronics and photonics: principles and practices. Prentice Hall New Jersey, 2001.

27. Reference
28. [1] Krames, M. R.; Shchekin, O. B.; Mueller-Mach, R.; Mueller, G. O.; Zhou, L.; Harbers, G.; Craford, M. G., Status and future of high-power light-emitting diodes for solid-state lighting. Journal of Display Technology 2007, 3 (2), 160-175.
29. [2] Sher, C.-W.; Chen, K.-J.; Lin, C.-C.; Han, H.-V.; Lin, H.-Y.; Tu, Z.-Y.; Tu, H.-H.; Honjo, K.; Jiang, H.-Y.; Ou, S.-L., Large-area, uniform white light LED source on a flexible substrate. Optics express 2015, 23 (19), A1167-A1178.
30. [3] Available:https://www.kurabo.co.jp/el/world/en/products/color/mazerustar/
31. [4] Available: https://www.disco.co.jp/cn_t/products/dicer/index.html
32. [5] Available:https://www.hitachi-hightech.com/file/us/pdf/library/literature/U-4100_Measurement_Systems_for_Optical_Parts_New_Materials.pdf
33. [6] Available http://www.isuzuglass.com/company/
34. [7] Available:http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html
35. [8] Shih-Hsuan Chien, “Improving Luminous Efficiency and Light Quality of Cutting-edge Quantum Dots Light-Emitting Devices using Distributed Bragg Reflector,” Master thesis, 2015.
36. [9] S. O. Kasap and R. K. Sinha, Optoelectronics and photonics: principles and practices. Prentice Hall New Jersey, 2001.
37. References
38. [1] Y. Taniyasu, M. Kasu, and T. Makimoto, "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature, vol. 441, no. 7091, p. 325, 2006.
39. [2] M. S. Shur and R. Gaska, "Deep-ultraviolet light-emitting diodes," IEEE Transactions on electron devices, vol. 57, no. 1, pp. 12-25, 2010.
40. [3] Y. Muramoto, M. Kimura, and S. Nouda, "Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp," Semiconductor Science and Technology, vol. 29, no. 8, p. 084004, 2014.
41. [4] M. Shatalov et al., "High power AlGaN ultraviolet light emitters," Semiconductor Science and Technology, vol. 29, no. 8, p. 084007, 2014.
42. [5] M. Khizar, Z. Fan, K. Kim, J. Lin, and H. Jiang, "Nitride deep-ultraviolet light-emitting diodes with microlens array," Applied Physics Letters, vol. 86, no. 17, p. 173504, 2005.
43. [6] H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, "Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes," Japanese Journal of Applied Physics, vol. 53, no. 10, p. 100209, 2014.
44. [7] M. Shatalov et al., "AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%," Applied Physics Express, vol. 5, no. 8, p. 082101, 2012.
45. [8] A. Fujioka et al., "High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics," Semiconductor Science and Technology, vol. 29, no. 8, p. 084005, 2014.
46. [9] H. Zheng, L. Li, X. Lei, X. Yu, S. Liu, and X. Luo, "Optical performance enhancement for chip-on-board packaging LEDs by adding TiO 2/silicone encapsulation layer," IEEE electron device letters, vol. 35, no. 10, pp. 1046-1048, 2014.
47. [10] S.-i. Inoue, T. Naoki, T. Kinoshita, T. Obata, and H. Yanagi, "Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure," Applied Physics Letters, vol. 106, no. 13, p. 131104, 2015.
48. [11] X. Luo, R. Hu, S. Liu, and K. Wang, "Heat and fluid flow in high-power LED packaging and applications," Progress in Energy and Combustion Science, vol. 56, pp. 1-32, 2016.
49. [12] J. Wu, Z. Zhang, H. Zheng, and S. Liu, "Realization of conformal phosphor coating by ionic wind patterning for phosphor-converted white LEDs," IEEE Photonics Technology Letters, vol. 29, no. 3, pp. 299-301, 2017.
50. [13] J. C. Huang, Y. P. Chu, M. Wei, and R. D. Deanin, "Comparison of epoxy resins for applications in light‐emitting diodes," Advances in Polymer Technology: Journal of the Polymer Processing Institute, vol. 23, no. 4, pp. 298-306, 2004.
51. [14] M. R. Krames et al., "Status and future of high-power light-emitting diodes for solid-state lighting," Journal of display technology, vol. 3, no. 2, pp. 160-175, 2007.
52. [15] S. Liu and X. Luo, LED packaging for lighting applications: design, manufacturing, and testing. John Wiley & Sons, 2011.
53. [16] Z. Qin, J. Feng, C. Zhaohui, X. Ling, W. Simin, and L. Sheng, "Effect of temperature and moisture on the luminescence properties of silicone filled with YAG phosphor," Journal of Semiconductors, vol. 32, no. 1, p. 012002, 2011.
54. [17] N. Lobo et al., "Enhancement of light extraction in ultraviolet light-emitting diodes using nanopixel contact design with Al reflector," Applied Physics Letters, vol. 96, no. 8, p. 081109, 2010.
55. [18] I.-C. Chen, Y.-D. Chen, C.-C. Hsieh, C.-H. Kuo, and L.-C. Chang, "Highly Reflective Ag∕ La Bilayer Ohmic Contacts to p-Type GaN," Journal of The Electrochemical Society, vol. 158, no. 3, pp. H285-H288, 2011.
56. [19] H. Kim et al., "High-reflectance and thermally stable AgCu alloy p-type reflectors for GaN-based light-emitting diodes," IEEE Photonics Technology Letters, vol. 19, no. 5, pp. 336-338, 2007.
57. [20] W. H. Lee, D. J. Chae, D. Y. Kim, and T. G. Kim, "Improved electrical and optical properties of vertical GaN LEDs using fluorine-doped ITO/Al ohmic reflectors," IEEE Journal of Quantum Electronics, vol. 47, no. 10, pp. 1277-1282, 2011.
58. [21] K. Takehara et al., "Indium–Tin Oxide/Al Reflective Electrodes for Ultraviolet Light-Emitting Diodes," Japanese Journal of Applied Physics, vol. 51, no. 4R, p. 042101, 2012.
59. [22] J.-O. Song, W.-K. Hong, Y. Park, J. Kwak, and T.-Y. Seong, "Low-resistance Al-based reflectors for high-power GaN-based flip-chip light-emitting diodes," Applied Physics Letters, vol. 86, no. 13, p. 133503, 2005.
60. [23] J.-O. Song, D.-S. Leem, J. Kwak, O. Nam, Y. Park, and T.-Y. Seong, "Low-resistance and highly-reflective Zn–Ni solid solution/Ag ohmic contacts for flip-chip light-emitting diodes," Applied physics letters, vol. 83, no. 24, pp. 4990-4992, 2003.
61. [24] H. W. Jang and J.-L. Lee, "Mechanism for ohmic contact formation of Ni∕ Ag contacts on p-type GaN," Applied physics letters, vol. 85, no. 24, pp. 5920-5922, 2004.
62. [25] J. O. Song, J.-S. Ha, and T.-Y. Seong, "Ohmic-contact technology for GaN-based light-emitting diodes: Role of p-type contact," IEEE transactions on electron devices, vol. 57, no. 1, pp. 42-59, 2010.
63. [26] N. Narendran, Y. Gu, J. Freyssinier, H. Yu, and L. Deng, "Solid-state lighting: failure analysis of white LEDs," Journal of Crystal Growth, vol. 268, no. 3-4, pp. 449-456, 2004.
64. [27] B. Luther, J. DeLucca, S. Mohney, and R. Karlicek Jr, "Analysis of a thin AlN interfacial layer in Ti/Al and Pd/Al ohmic contacts to n-type GaN," Applied physics letters, vol. 71, no. 26, pp. 3859-3861, 1997.
65. [28] C. Chiu et al., "Efficiency enhancement of UV/blue light emitting diodes via nanoscaled epitaxial lateral overgrowth of GaN on a SiO2 nanorod-array patterned sapphire substrate," Journal of Crystal Growth, vol. 310, no. 23, pp. 5170-5174, 2008.
66. [29] T. Inazu et al., "Improvement of light extraction efficiency for AlGaN-based deep ultraviolet light-emitting diodes," Japanese Journal of Applied Physics, vol. 50, no. 12R, p. 122101, 2011.
67. [30] Y. Peng, S. Wang, H. Cheng, H. Wang, M. Chen, and S. Liu, "Light efficiency enhancement of deep ultraviolet light-emitting diodes packaged by nanostructured silica glass," Journal of Display Technology, vol. 12, no. 10, pp. 1106-1111, 2016.
68. [31] Y. Peng, X. Guo, R. Liang, H. Cheng, and M. Chen, "Enhanced light extraction from DUV-LEDs by AlN-doped fluoropolymer encapsulation," IEEE Photon. Technol. Lett., vol. 29, no. 14, pp. 1151-1154, 2017.
69. [32] M. Ichikawa et al., "High-output-power deep ultraviolet light-emitting diode assembly using direct bonding," Applied Physics Express, vol. 9, no. 7, p. 072101, 2016.
70. [33] D.-Y. Song, R. Sprague, H. A. Macleod, and M. R. Jacobson, "Progress in the development of a durable silver-based high-reflectance coating for astronomical telescopes," Applied optics, vol. 24, no. 8, pp. 1164-1170, 1985.
71. Reference
72. [1] C.-H. Lin et al., "Novel Method for Estimating Phosphor Conversion Efficiency of Light-Emitting Diodes," Crystals, vol. 8, no. 12, p. 442, 2018.
73. [2] C.-H. Lin et al., "Square Column Structure of High Efficiency, Reliable, Uniformly Flexible LED Devices," Crystals, vol. 8, no. 12, p. 472, 2018.
74. [3] Y. Muramoto, M. Kimura, and S. Nouda, "Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp," Semiconductor Science and Technology, vol. 29, no. 8, p. 084004, 2014.
75. [4] M. Shatalov et al., "High power AlGaN ultraviolet light emitters," Semiconductor Science and Technology, vol. 29, no. 8, p. 084007, 2014.
76. [5] M. S. Shur and R. Gaska, "Deep-ultraviolet light-emitting diodes," IEEE Transactions on electron devices, vol. 57, no. 1, pp. 12-25, 2010.
77. [6] W. Sun et al., "Continuous wave milliwatt power AlGaN light emitting diodes at 280 nm," Japanese journal of applied physics, vol. 43, no. 11A, p. L1419, 2004.
78. [7] Y. Taniyasu, M. Kasu, and T. Makimoto, "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature, vol. 441, no. 7091, p. 325, 2006.
79. [8] M. Kneissl et al., "Ultraviolet InAlGaN light emitting diodes grown on hydride vapor phase epitaxy AlGaN/sapphire templates," Japanese journal of applied physics, vol. 45, no. 5R, p. 3905, 2006.
80. [9] R. Liang, F. Wu, S. Wang, Q. Chen, J. Dai, and C. Chen, "Enhanced optical and thermal performance of eutectic flip-chip ultraviolet light-emitting diodes via AlN-doped-silicone encapsulant," IEEE Transactions on Electron Devices, vol. 64, no. 2, pp. 467-471, 2017.
81. [10] Y.-M. Pai et al., "Enhancing the Light-Extraction Efficiency of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes by Optimizing the Diameter and Tilt of the Aluminum Sidewall," Crystals, vol. 8, no. 11, p. 420, 2018.
82. [11] H. Tsuzuki et al., "Novel UV devices on high-quality AlGaN using grooved underlying layer," Journal of Crystal Growth, vol. 311, no. 10, pp. 2860-2863, 2009.
83. [12] Y.-K. Su, P.-C. Wang, C.-L. Lin, G.-S. Huang, and C.-M. Wei, "Enhanced Light Extraction Using Blue LED Package Consisting of ${\rm TiO} _ {2} $-Doped Silicone Layer and Silicone Lens," IEEE Electron Device Letters, vol. 35, no. 5, pp. 575-577, 2014.
84. [13] P.-C. Wang, Y.-K. Su, C.-L. Lin, and G.-S. Huang, "Improving performance and reducing amount of phosphor required in packaging of white LEDs with TiO2-doped silicone," IEEE Electron Device Lett., vol. 35, no. 6, pp. 657-659, 2014.
85. [14] W.-J. Yin, S. Chen, J.-H. Yang, X.-G. Gong, Y. Yan, and S.-H. Wei, "Effective band gap narrowing of anatase TiO 2 by strain along a soft crystal direction," Applied physics letters, vol. 96, no. 22, p. 221901, 2010.
86. [15] P. Zhao and H. Zhao, "Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes," Optics express, vol. 20, no. 105, pp. A765-A776, 2012.
87. [16] H. Zheng, L. Li, X. Lei, X. Yu, S. Liu, and X. Luo, "Optical performance enhancement for chip-on-board packaging LEDs by adding TiO 2/silicone encapsulation layer," IEEE electron device letters, vol. 35, no. 10, pp. 1046-1048, 2014.
88. [17] E. Gnani, S. Reggiani, R. Colle, and M. Rudan, "Band-structure calculations of SiO/sub 2/by means of Hartree-Fock and density-functional techniques," IEEE Transactions on electron devices, vol. 47, no. 10, pp. 1795-1803, 2000.
89. [18] C. Tan and J. Arndt, "Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range," Journal of Physics and Chemistry of Solids, vol. 61, no. 8, pp. 1315-1320, 2000.
90. [19] J.-Q. Xi et al., "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature photonics, vol. 1, no. 3, p. 176, 2007.
91. [20] D. Luna-Moreno et al., "Refractive index measurement of pure and Er3+-doped ZrO2–SiO2 sol–gel film by using the Brewster angle technique," optical materials, vol. 19, no. 2, pp. 275-281, 2002.
92. [21] S. Bradley et al., "Immunotoxicity of 180 day exposure to polydimethylsiloxane (silicone) fluid, gel and elastomer and polyurethane disks in female B6C3F1 mice," Drug and chemical toxicology, vol. 17, no. 3, pp. 221-269, 1994.
93. [22] F. Carrillo et al., "Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus," Journal of materials research, vol. 20, no. 10, pp. 2820-2830, 2005.
94. [23] F. Y. Hshieh, "Shielding effects of silica‐ash layer on the combustion of silicones and their possible applications on the fire retardancy of organic polymers," Fire and Materials, vol. 22, no. 2, pp. 69-76, 1998.
95. [24] A. Kanellopoulos and M. Owen, "The adsorption of polydimethylsiloxane polyether ABA block copolymers at the water/air and water/silicone fluid interface," Journal of Colloid and Interface Science, vol. 35, no. 1, pp. 120-125, 1971.
96. [25] K. Wilson, J. Goff, J. Riffle, L. Harris, and T. St Pierre, "Polydimethylsiloxane‐magnetite nanoparticle complexes and dispersions in polysiloxane carrier fluids," Polymers for advanced technologies, vol. 16, no. 2‐3, pp. 200-211, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊