|
1. [1] https://wcs.webofknowledge.com/ 2. [2] S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. J. N. p. Nakamura, "Prospects for LED lighting," vol. 3, no. 4, p. 180, 2009. 3. [3] E. F. Schubert and J. K. J. S. Kim, "Solid-state light sources getting smart," vol. 308, no. 5726, pp. 1274-1278, 2005. 4. [4] H. C. Chen et al., "A novel randomly textured phosphor structure for highly efficient white light-emitting diodes," vol. 7, no. 1, p. 188, 2012. 5. [5] B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. J. J. o. T. E. S. Do, "Selecting morphology of Y3Al5O12: Ce3+ phosphors for minimizing scattering loss in the pc-LED package," vol. 159, no. 4, pp. J96-J106, 2012. 6. [6] K. Chen et al., "Effect of the thermal characteristics of phosphor for the conformal and remote structures in white light-emitting diodes," vol. 5, no. 5, pp. 8200508-8200508, 2013. 7. [7] J. K. Kim and E. F. J. O. E. Schubert, "Transcending the replacement paradigm of solid-state lighting," vol. 16, no. 26, pp. 21835-21842, 2008. 8. [8] E. F. Schubert, Light-emitting diodes. E. Fred Schubert, 2018. 9. [9] S. J. s. Nakamura, "The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes," vol. 281, no. 5379, pp. 956-961, 1998. 10. [10] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. J. A. P. L. Kurimoto, "Optical bandgap energy of wurtzite InN," vol. 81, no. 7, pp. 1246-1248, 2002. 11. [11] J. Pankove, E. Miller, and J. J. J. o. L. Berkeyheiser, "GaN blue light-emitting diodes," vol. 5, no. 1, pp. 84-86, 1972. 12. [12] H. Amano, N. Sawaki, I. Akasaki, and Y. J. A. P. L. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," vol. 48, no. 5, pp. 353-355, 1986. 13. [13] S. J. J. J. o. A. P. Nakamura, "GaN growth using GaN buffer layer," vol. 30, no. 10A, p. L1705, 1991. 14. [14] S. Nakamura, T. Mukai, M. Senoh, and N. J. J. J. o. A. P. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films," vol. 31, no. 2B, p. L139, 1992. 15. [15] S. Nakamura and T. J. J. j. o. a. p. Mukai, "High-quality InGaN films grown on GaN films," vol. 31, no. 10B, p. L1457, 1992. 16. [16] S. Nakamura, M. Senoh, N. Iwasa, S.-i. Nagahama, T. Yamada, and T. J. J. J. o. A. P. Mukai, "Superbright green InGaN single-quantum-well-structure light-emitting diodes," vol. 34, no. 10B, p. L1332, 1995. 17. [17] S. Nakamura, T. Mukai, and M. J. A. P. L. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," vol. 64, no. 13, pp. 1687-1689, 1994. 18. [18] Available http://www.wyckomaruv.com/UVTechnology.html 19. [19] Available https://www.spacewx.com/pdf/SET_21348_2004.pdf 20. [20] Y. Muramoto, M. Kimura, S. J. S. S. Nouda, and Technology, "Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp," vol. 29, no. 8, p. 084004, 2014.
21. Reference 22. [1] B. E. Saleh, M. C. J. W. S. i. P. Teich, and W. Applied Optics, "Fundamentals of photonics. 2007," vol. 10, p. 0471213748. 23. [2] S. C. Allen and A. J. J. A. P. L. Steckl, "A nearly ideal phosphor-converted white light-emitting diode," vol. 92, no. 14, p. 128, 2008. 24. [3] S.-W. Fan, A. K. Srivastava, and V. P. J. A. P. L. Dravid, "UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO," vol. 95, no. 14, p. 142106, 2009. 25. [4] N. Ohta and A. Robertson, Colorimetry: fundamentals and applications. John Wiley & Sons, 2006. 26. [5] S. O. Kasap and R. K. Sinha, Optoelectronics and photonics: principles and practices. Prentice Hall New Jersey, 2001.
27. Reference 28. [1] Krames, M. R.; Shchekin, O. B.; Mueller-Mach, R.; Mueller, G. O.; Zhou, L.; Harbers, G.; Craford, M. G., Status and future of high-power light-emitting diodes for solid-state lighting. Journal of Display Technology 2007, 3 (2), 160-175. 29. [2] Sher, C.-W.; Chen, K.-J.; Lin, C.-C.; Han, H.-V.; Lin, H.-Y.; Tu, Z.-Y.; Tu, H.-H.; Honjo, K.; Jiang, H.-Y.; Ou, S.-L., Large-area, uniform white light LED source on a flexible substrate. Optics express 2015, 23 (19), A1167-A1178. 30. [3] Available:https://www.kurabo.co.jp/el/world/en/products/color/mazerustar/ 31. [4] Available: https://www.disco.co.jp/cn_t/products/dicer/index.html 32. [5] Available:https://www.hitachi-hightech.com/file/us/pdf/library/literature/U-4100_Measurement_Systems_for_Optical_Parts_New_Materials.pdf 33. [6] Available http://www.isuzuglass.com/company/ 34. [7] Available:http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html 35. [8] Shih-Hsuan Chien, “Improving Luminous Efficiency and Light Quality of Cutting-edge Quantum Dots Light-Emitting Devices using Distributed Bragg Reflector,” Master thesis, 2015. 36. [9] S. O. Kasap and R. K. Sinha, Optoelectronics and photonics: principles and practices. Prentice Hall New Jersey, 2001. 37. References 38. [1] Y. Taniyasu, M. Kasu, and T. Makimoto, "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature, vol. 441, no. 7091, p. 325, 2006. 39. [2] M. S. Shur and R. Gaska, "Deep-ultraviolet light-emitting diodes," IEEE Transactions on electron devices, vol. 57, no. 1, pp. 12-25, 2010. 40. [3] Y. Muramoto, M. Kimura, and S. Nouda, "Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp," Semiconductor Science and Technology, vol. 29, no. 8, p. 084004, 2014. 41. [4] M. Shatalov et al., "High power AlGaN ultraviolet light emitters," Semiconductor Science and Technology, vol. 29, no. 8, p. 084007, 2014. 42. [5] M. Khizar, Z. Fan, K. Kim, J. Lin, and H. Jiang, "Nitride deep-ultraviolet light-emitting diodes with microlens array," Applied Physics Letters, vol. 86, no. 17, p. 173504, 2005. 43. [6] H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, "Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes," Japanese Journal of Applied Physics, vol. 53, no. 10, p. 100209, 2014. 44. [7] M. Shatalov et al., "AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%," Applied Physics Express, vol. 5, no. 8, p. 082101, 2012. 45. [8] A. Fujioka et al., "High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics," Semiconductor Science and Technology, vol. 29, no. 8, p. 084005, 2014. 46. [9] H. Zheng, L. Li, X. Lei, X. Yu, S. Liu, and X. Luo, "Optical performance enhancement for chip-on-board packaging LEDs by adding TiO 2/silicone encapsulation layer," IEEE electron device letters, vol. 35, no. 10, pp. 1046-1048, 2014. 47. [10] S.-i. Inoue, T. Naoki, T. Kinoshita, T. Obata, and H. Yanagi, "Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure," Applied Physics Letters, vol. 106, no. 13, p. 131104, 2015. 48. [11] X. Luo, R. Hu, S. Liu, and K. Wang, "Heat and fluid flow in high-power LED packaging and applications," Progress in Energy and Combustion Science, vol. 56, pp. 1-32, 2016. 49. [12] J. Wu, Z. Zhang, H. Zheng, and S. Liu, "Realization of conformal phosphor coating by ionic wind patterning for phosphor-converted white LEDs," IEEE Photonics Technology Letters, vol. 29, no. 3, pp. 299-301, 2017. 50. [13] J. C. Huang, Y. P. Chu, M. Wei, and R. D. Deanin, "Comparison of epoxy resins for applications in light‐emitting diodes," Advances in Polymer Technology: Journal of the Polymer Processing Institute, vol. 23, no. 4, pp. 298-306, 2004. 51. [14] M. R. Krames et al., "Status and future of high-power light-emitting diodes for solid-state lighting," Journal of display technology, vol. 3, no. 2, pp. 160-175, 2007. 52. [15] S. Liu and X. Luo, LED packaging for lighting applications: design, manufacturing, and testing. John Wiley & Sons, 2011. 53. [16] Z. Qin, J. Feng, C. Zhaohui, X. Ling, W. Simin, and L. Sheng, "Effect of temperature and moisture on the luminescence properties of silicone filled with YAG phosphor," Journal of Semiconductors, vol. 32, no. 1, p. 012002, 2011. 54. [17] N. Lobo et al., "Enhancement of light extraction in ultraviolet light-emitting diodes using nanopixel contact design with Al reflector," Applied Physics Letters, vol. 96, no. 8, p. 081109, 2010. 55. [18] I.-C. Chen, Y.-D. Chen, C.-C. Hsieh, C.-H. Kuo, and L.-C. Chang, "Highly Reflective Ag∕ La Bilayer Ohmic Contacts to p-Type GaN," Journal of The Electrochemical Society, vol. 158, no. 3, pp. H285-H288, 2011. 56. [19] H. Kim et al., "High-reflectance and thermally stable AgCu alloy p-type reflectors for GaN-based light-emitting diodes," IEEE Photonics Technology Letters, vol. 19, no. 5, pp. 336-338, 2007. 57. [20] W. H. Lee, D. J. Chae, D. Y. Kim, and T. G. Kim, "Improved electrical and optical properties of vertical GaN LEDs using fluorine-doped ITO/Al ohmic reflectors," IEEE Journal of Quantum Electronics, vol. 47, no. 10, pp. 1277-1282, 2011. 58. [21] K. Takehara et al., "Indium–Tin Oxide/Al Reflective Electrodes for Ultraviolet Light-Emitting Diodes," Japanese Journal of Applied Physics, vol. 51, no. 4R, p. 042101, 2012. 59. [22] J.-O. Song, W.-K. Hong, Y. Park, J. Kwak, and T.-Y. Seong, "Low-resistance Al-based reflectors for high-power GaN-based flip-chip light-emitting diodes," Applied Physics Letters, vol. 86, no. 13, p. 133503, 2005. 60. [23] J.-O. Song, D.-S. Leem, J. Kwak, O. Nam, Y. Park, and T.-Y. Seong, "Low-resistance and highly-reflective Zn–Ni solid solution/Ag ohmic contacts for flip-chip light-emitting diodes," Applied physics letters, vol. 83, no. 24, pp. 4990-4992, 2003. 61. [24] H. W. Jang and J.-L. Lee, "Mechanism for ohmic contact formation of Ni∕ Ag contacts on p-type GaN," Applied physics letters, vol. 85, no. 24, pp. 5920-5922, 2004. 62. [25] J. O. Song, J.-S. Ha, and T.-Y. Seong, "Ohmic-contact technology for GaN-based light-emitting diodes: Role of p-type contact," IEEE transactions on electron devices, vol. 57, no. 1, pp. 42-59, 2010. 63. [26] N. Narendran, Y. Gu, J. Freyssinier, H. Yu, and L. Deng, "Solid-state lighting: failure analysis of white LEDs," Journal of Crystal Growth, vol. 268, no. 3-4, pp. 449-456, 2004. 64. [27] B. Luther, J. DeLucca, S. Mohney, and R. Karlicek Jr, "Analysis of a thin AlN interfacial layer in Ti/Al and Pd/Al ohmic contacts to n-type GaN," Applied physics letters, vol. 71, no. 26, pp. 3859-3861, 1997. 65. [28] C. Chiu et al., "Efficiency enhancement of UV/blue light emitting diodes via nanoscaled epitaxial lateral overgrowth of GaN on a SiO2 nanorod-array patterned sapphire substrate," Journal of Crystal Growth, vol. 310, no. 23, pp. 5170-5174, 2008. 66. [29] T. Inazu et al., "Improvement of light extraction efficiency for AlGaN-based deep ultraviolet light-emitting diodes," Japanese Journal of Applied Physics, vol. 50, no. 12R, p. 122101, 2011. 67. [30] Y. Peng, S. Wang, H. Cheng, H. Wang, M. Chen, and S. Liu, "Light efficiency enhancement of deep ultraviolet light-emitting diodes packaged by nanostructured silica glass," Journal of Display Technology, vol. 12, no. 10, pp. 1106-1111, 2016. 68. [31] Y. Peng, X. Guo, R. Liang, H. Cheng, and M. Chen, "Enhanced light extraction from DUV-LEDs by AlN-doped fluoropolymer encapsulation," IEEE Photon. Technol. Lett., vol. 29, no. 14, pp. 1151-1154, 2017. 69. [32] M. Ichikawa et al., "High-output-power deep ultraviolet light-emitting diode assembly using direct bonding," Applied Physics Express, vol. 9, no. 7, p. 072101, 2016. 70. [33] D.-Y. Song, R. Sprague, H. A. Macleod, and M. R. Jacobson, "Progress in the development of a durable silver-based high-reflectance coating for astronomical telescopes," Applied optics, vol. 24, no. 8, pp. 1164-1170, 1985. 71. Reference 72. [1] C.-H. Lin et al., "Novel Method for Estimating Phosphor Conversion Efficiency of Light-Emitting Diodes," Crystals, vol. 8, no. 12, p. 442, 2018. 73. [2] C.-H. Lin et al., "Square Column Structure of High Efficiency, Reliable, Uniformly Flexible LED Devices," Crystals, vol. 8, no. 12, p. 472, 2018. 74. [3] Y. Muramoto, M. Kimura, and S. Nouda, "Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp," Semiconductor Science and Technology, vol. 29, no. 8, p. 084004, 2014. 75. [4] M. Shatalov et al., "High power AlGaN ultraviolet light emitters," Semiconductor Science and Technology, vol. 29, no. 8, p. 084007, 2014. 76. [5] M. S. Shur and R. Gaska, "Deep-ultraviolet light-emitting diodes," IEEE Transactions on electron devices, vol. 57, no. 1, pp. 12-25, 2010. 77. [6] W. Sun et al., "Continuous wave milliwatt power AlGaN light emitting diodes at 280 nm," Japanese journal of applied physics, vol. 43, no. 11A, p. L1419, 2004. 78. [7] Y. Taniyasu, M. Kasu, and T. Makimoto, "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature, vol. 441, no. 7091, p. 325, 2006. 79. [8] M. Kneissl et al., "Ultraviolet InAlGaN light emitting diodes grown on hydride vapor phase epitaxy AlGaN/sapphire templates," Japanese journal of applied physics, vol. 45, no. 5R, p. 3905, 2006. 80. [9] R. Liang, F. Wu, S. Wang, Q. Chen, J. Dai, and C. Chen, "Enhanced optical and thermal performance of eutectic flip-chip ultraviolet light-emitting diodes via AlN-doped-silicone encapsulant," IEEE Transactions on Electron Devices, vol. 64, no. 2, pp. 467-471, 2017. 81. [10] Y.-M. Pai et al., "Enhancing the Light-Extraction Efficiency of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes by Optimizing the Diameter and Tilt of the Aluminum Sidewall," Crystals, vol. 8, no. 11, p. 420, 2018. 82. [11] H. Tsuzuki et al., "Novel UV devices on high-quality AlGaN using grooved underlying layer," Journal of Crystal Growth, vol. 311, no. 10, pp. 2860-2863, 2009. 83. [12] Y.-K. Su, P.-C. Wang, C.-L. Lin, G.-S. Huang, and C.-M. Wei, "Enhanced Light Extraction Using Blue LED Package Consisting of ${\rm TiO} _ {2} $-Doped Silicone Layer and Silicone Lens," IEEE Electron Device Letters, vol. 35, no. 5, pp. 575-577, 2014. 84. [13] P.-C. Wang, Y.-K. Su, C.-L. Lin, and G.-S. Huang, "Improving performance and reducing amount of phosphor required in packaging of white LEDs with TiO2-doped silicone," IEEE Electron Device Lett., vol. 35, no. 6, pp. 657-659, 2014. 85. [14] W.-J. Yin, S. Chen, J.-H. Yang, X.-G. Gong, Y. Yan, and S.-H. Wei, "Effective band gap narrowing of anatase TiO 2 by strain along a soft crystal direction," Applied physics letters, vol. 96, no. 22, p. 221901, 2010. 86. [15] P. Zhao and H. Zhao, "Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes," Optics express, vol. 20, no. 105, pp. A765-A776, 2012. 87. [16] H. Zheng, L. Li, X. Lei, X. Yu, S. Liu, and X. Luo, "Optical performance enhancement for chip-on-board packaging LEDs by adding TiO 2/silicone encapsulation layer," IEEE electron device letters, vol. 35, no. 10, pp. 1046-1048, 2014. 88. [17] E. Gnani, S. Reggiani, R. Colle, and M. Rudan, "Band-structure calculations of SiO/sub 2/by means of Hartree-Fock and density-functional techniques," IEEE Transactions on electron devices, vol. 47, no. 10, pp. 1795-1803, 2000. 89. [18] C. Tan and J. Arndt, "Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range," Journal of Physics and Chemistry of Solids, vol. 61, no. 8, pp. 1315-1320, 2000. 90. [19] J.-Q. Xi et al., "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature photonics, vol. 1, no. 3, p. 176, 2007. 91. [20] D. Luna-Moreno et al., "Refractive index measurement of pure and Er3+-doped ZrO2–SiO2 sol–gel film by using the Brewster angle technique," optical materials, vol. 19, no. 2, pp. 275-281, 2002. 92. [21] S. Bradley et al., "Immunotoxicity of 180 day exposure to polydimethylsiloxane (silicone) fluid, gel and elastomer and polyurethane disks in female B6C3F1 mice," Drug and chemical toxicology, vol. 17, no. 3, pp. 221-269, 1994. 93. [22] F. Carrillo et al., "Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus," Journal of materials research, vol. 20, no. 10, pp. 2820-2830, 2005. 94. [23] F. Y. Hshieh, "Shielding effects of silica‐ash layer on the combustion of silicones and their possible applications on the fire retardancy of organic polymers," Fire and Materials, vol. 22, no. 2, pp. 69-76, 1998. 95. [24] A. Kanellopoulos and M. Owen, "The adsorption of polydimethylsiloxane polyether ABA block copolymers at the water/air and water/silicone fluid interface," Journal of Colloid and Interface Science, vol. 35, no. 1, pp. 120-125, 1971. 96. [25] K. Wilson, J. Goff, J. Riffle, L. Harris, and T. St Pierre, "Polydimethylsiloxane‐magnetite nanoparticle complexes and dispersions in polysiloxane carrier fluids," Polymers for advanced technologies, vol. 16, no. 2‐3, pp. 200-211, 2005.
|