(18.210.12.229) 您好!臺灣時間:2021/03/05 11:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:白騏毓
研究生(外文):Bai, Chi-Yu
論文名稱:輕量化光學收發裝置與大氣通道模型於自由空間光通訊之應用研究
論文名稱(外文):Compact optical transceiver and atmospheric channel model for free space optical communication
指導教授:陳政寰陳政寰引用關係
指導教授(外文):Chen, Cheng-Huan
口試委員:鄒志偉賴暎杰葉建宏
口試委員(外文):Chow, Chi-WaiLai, Yin-ChiehYeh, Chien-Hung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:90
中文關鍵詞:自由空間光通訊收發裝置大氣通道模型鏈路預算
外文關鍵詞:free space optical communicationtransceiveratmospheric channel modellink budget
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
ABSTRACT II
誌謝 IV
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 通訊技術簡介 1
1.2.1 射頻與無線通訊 2
1.2.2 可見光通訊 3
1.2.3 自由空間光通訊 5
1.3 文獻回顧 6
1.3.1 系統震盪位移問題與解決方案 7
1.3.2 大氣亂流問題與解決方案 9
1.3.3 大氣吸收散射問題與解決方案 10
1.4 研究動機 11
1.5 研究目標 12
1.6 論文架構 13
第二章 研究相關原理 14
2.1 高斯光束 14
2.1.1 高斯光束於自由空間傳播之行為 14
2.1.2 高斯光束於經過透鏡之行為 19
2.2 光纖 22
2.2.1 最大接受角與數值孔徑 22
2.2.2 光功率單位 24
2.2.3 光纖損失 25
第三章 大氣通道模型 27
3.1 垂直大氣層結構 27
3.2 光束行經大氣通道模型相關理論 29
3.3 大氣效應下光功率衰減因素 32
3.3.1 大氣吸收 32
3.3.2 大氣散射 33
3.3.3 能見度 34
3.3.4 大氣亂流 37
3.4 驗證光束行經大氣通道衰減相關理論的可行性 39
3.4.1 Google Project Loon計畫與大氣通道衰減理論之比較 40
3.4.2 Google Project Loon計畫與Zemax模擬接收功率值之比較 42
3.4.3 統整前述相關理論 47
3.5 收發裝置於大氣通道下之光功率衰減模擬 48
3.5.1 改變collimator光纖接頭位置與光功率衰減之關係 48
3.5.2 鏈路預算 50
3.5.3 鏈路預算衰減項目分析 55
第四章 輕量化光學收發裝置 58
4.1 實驗架構 58
4.2 設計規格 59
4.3 光路設計與分析 62
4.3.1 Laser Diode (LD)光路架構設計 62
4.3.2 Quadrant Photo-diode (QPD)光路架構設計 65
4.3.3 Photodiode (PD)光路架構設計 70
第五章 實驗結果與分析 75
5.1 光斑直徑實驗與模擬值之比較 75
5.2 模擬接收光功率與實際接收光功率之比較 77
5.3 戶外網速測試實驗 80
第六章 結論與未來展望 83
6.1 結論 83
6.2 未來展望 83
參考文獻 85
[1]M. Mukherjee, "Wireless Communication-Moving from RF to Optical", Proceedings of the 10th Indiacom - 2016 3rd International Conference on Computing for Sustainable Global Development, Proceedings Paper pp. 788-795, 2016.
[2]Q. Fan et al., "Reducing the Impact of Handovers in Ground-to-Train Free Space Optical Communications", Ieee Transactions on Vehicular Technology, Article vol. 67, no. 2, pp. 1292-1301, Feb 2018.
[3]Kim, II and E. Korevaar, "Availability of Free Space Optics (FSO) and hybrid FSO/RF systems," in Optical Wireless Communications IV Conference, Denver, Co, 2001, vol. 4530, pp. 84-95, BELLINGHAM: Spie-Int Soc Optical Engineering, 2001.
[4]X. Bao, G. D. Yu, J. S. Dai, and X. R. Zhu, "Li-Fi: Light fidelity-a survey", Wireless Networks, Article vol. 21, no. 6, pp. 1879-1889, Aug 2015.
[5]葉建宏、鄒志偉,「LED 可見光通訊的時代到了!!」,CTIMES,2012.
[6]C. H. Yeh, C. W. Chow, H. Y. Chen, J. Chen, and Y. L. Liu, "Adaptive 84.44-190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance", Optics Express, Article vol. 22, no. 8, pp. 9783-9788, Apr 2014.
[7]Y. P. Lin et al., "A 10-Gbps optical WiMAX transport system", Optics Express, Article vol. 22, no. 3, pp. 2761-2769, Feb 2014.
[8]M. A. Khalighi and M. Uysal, "Survey on Free Space Optical Communication: A Communication Theory Perspective", Ieee Communications Surveys and Tutorials, Article vol. 16, no. 4, pp. 2231-2258, 2014.
[9]H. Urabe et al., "High data rate ground-to-train free-space optical communication system", Optical Engineering, Article vol. 51, no. 3, p. 9, Mar 2012, Art. no. 031204.
[10] C. H. Wen, C. X. Wang, and Y. Q. Li, "Optical antenna in laser inter-satellites communication," in Conference on Network Architectures, Management and Applications II, Beijing, PEOPLES R CHINA, 2004, vol. 5626, pp. 785-792, BELLINGHAM: Spie-Int Soc Optical Engineering, 2005.
[11] S. S. Muhammad, P. Kohldorfer, E. Leitgeb, and Ieee, "Channel modeling for terrestrial free space optical links", 2005 7th International Conference on Transparent Optical Networks, Vol 1, Proceedings, Proceedings Paper pp. 407-410, 2005.
[12] 李正中、楊宗勳,「光電科技概論」,五南圖書,2011
[13] S. Arnon and N. S. Kopeika, "Performance limitations of free-space optical communication satellite networks due to vibrations - Analog case", Optical Engineering, Article vol. 36, no. 1, pp. 175-182, Jan 1997.
[14] K. Mori et al., "Fast Handover Mechanism for High Data Rate Ground-to-Train Free-Space Optical Communication Transceiver for Internet Streaming Applications", Ieice Transactions on Communications, Article vol. E99B, no. 5, pp. 1206-1215, May 2016.
[15] X. M. Zhu and J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels", Ieee Transactions on Communications, Article; Proceedings Paper vol. 50, no. 8, pp. 1293-1300, Aug 2002.
[16] J. C. Ricklin and F. M. Davidson, "Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication", Journal of the Optical Society of America a-Optics Image Science and Vision, Article vol. 19, no. 9, pp. 1794-1802, Sep 2002.
[17] W. O. Popoola, Z. Ghassernlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, "Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel", Iet Optoelectronics, Article vol. 2, no. 1, pp. 16-23, Feb 2008.
[18] Y. E. Yenice and B. G. Evans, "Adaptive beam-size control for ground to satellite laser communications," in Conference on Free-Space Laser Communication Technologies X, San Jose, Ca, 1998, vol. 3266, pp. 221-230, BELLINGHAM: Spie-Int Soc Optical Engineering, 1998.
[19] B. M. Levine et al., "Horizontal line-of-sight turbulence over near-ground paths and implications for adaptive optics corrections in laser communications", Applied Optics, Article vol. 37, no. 21, pp. 4553-4560, Jul 1998.
[20] R. K. Tyson, "Adaptive optics and ground-to-space laser communications", Applied Optics, Article vol. 35, no. 19, pp. 3640-3646, Jul 1996.
[21] C. A. Thompson et al., "Free space optical communications utilizing MEMS adaptive optics correction," in Conference on Free-Space Laser Communication and Laser Imaging II, Seattle, Wa, 2002, vol. 4821, pp. 129-138, BELLINGHAM: Spie-Int Soc Optical Engineering, 2002.
[22] H. Kaushal and G. Kaddoum, "Optical Communication in Space: Challenges and Mitigation Techniques", Ieee Communications Surveys and Tutorials, Article vol. 19, no. 1, pp. 57-96, 2017.
[23] M. Al Naboulsi, H. Sizun, and F. de Fornel, "Fog attenuation prediction for optical and infrared waves", Optical Engineering, Article vol. 43, no. 2, pp. 319-329, Feb 2004.
[24] A. A. Anis, A. K. Rahman, C. B. M. Rashidi, S. A. Aljunid, and Ieee, "Link Budget Analysis for Free Space Optical (FSO) Communication under Haze Condition with Adverse Wavelength," in 3rd International Conference on Electronic Design (ICED), Phuket, THAILAND, 2016, pp. 354-357, NEW YORK: Ieee, 2016.
[25] Kim, II, M. Mitchell, and E. Korevaar, "Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm," in Conference on Optical Wireless Communications II, Boston, Ma, 1999, vol. 3850, pp. 49-62, BELLINGHAM: Spie-Int Soc Optical Engineering, 1999.
[26] J. D. Barry, and G. S. Mecherle, "BEAM POINTING ERROR AS A SIGNIFICANT DESIGN PARAMETER FOR SATELLITE-BORNE, FREE-SPACE OPTICAL COMMUNICATION-SYSTEMS," Opt. Eng. 24, 1049-1054 (1985).
[27] X. L. Feng, Z. H. Wu, T. S. Wang, P. Zhang, X. Y. Li, H. L. Jiang, Y. W. Su, H. W. He, X. Y. Wang, and S. M. Gao, "Experimental demonstration of bidirectional up to 40 Gbit/s QPSK coherent free-space optical communication link over similar to 1 km," Opt. Commun. 410, 674-679 (2018).
[28] L. Li, R. Z. Zhang, Z. Zhao, G. D. Xie, P. C. Liao, K. Pang, H. Q. Song, C. Liu, Y. X. Ren, G. Labroille, P. Jian, D. Starodubov, B. Lynn, R. Bock, M. Tur, and A. E. Willner, "High-Capacity Free-Space Optical Communications Between a Ground Transmitter and a Ground Receiver via a UAV Using Multiplexing of Multiple Orbital-Angular-Momentum Beams," Sci Rep 7, 12 (2017).
[29] K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "RoFSO: A Universal Platform for Convergence of Fiber and Free-Space Optical Communication Networks," IEEE Commun. Mag. 48, 130-137 (2010).
[30] E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D'Errico, V. Guarino, and M. Matsumoto, "1.28 Terabit/s (32x40 Gbit/s) WDM Transmission System for Free Space Optical Communications," IEEE J. Sel. Areas Commun. 27, 1639-1645 (2009).
[31] T. Shang, J. J. Jia, and X. Wang, "Analysis and design of a multi-transceiver optical cylinder antenna for mobile free space optical communication," Opt. Laser Technol. 44, 2384-2392 (2012).
[32] A. Sevincer, M. Yuksel, and Ieee, "Effective Transceiver Selection for Mobile Multi-Directional Free-Space-Optical Modules," in IEEE Wireless Communications and Networking Conference (WCNC)(Ieee, Istanbul, TURKEY, 2014), pp. 2988-2993.
[33] P. Polynkin, A. Peleg, L. Klein, T. Rhoadarmer, and J. Moloney, "Optimized multiemitter beams for free-space optical communications through turbulent atmosphere," Opt. Lett. 32, 885-887 (2007).
[34] M. Hiruta, M. Nakagawa, S. Haruyama, S. Ishikawa, and Etri, "A Study on Optical Wireless Train Communication System using Mobile Object Tracking Technique," 11th International Conference on Advanced Communication Technology, Vols I-Iii, Proceedings, 35-40 (2009).
[35] Rosencher, Emmanuel, Optoelectronics, Cambridge University Press., 2002
[36] Attenuation of Optical Fibers, INVOCOM, http://www.invocom.et.put.poznan.pl/~invocom/C/P1-9/swiatlowody_en/p1-1_2_2.htm
[37] 林博雄、周仲島、陳詠昌,「大氣探空直接校驗觀測實驗 研究成果報告」,國立台灣大學大氣科學系,中華民國96年3月2日
[38] John Carl Leader, “Laser Beam Propagation in the Atmosphere”, PROCEEDINGS VOLUME 0410, 1983 TECHNICAL SYMPOSIUM EAST, 5-7 APRIL 1983
[39] Chaudhary, Sushank, and Angela Amphawan. “The Role and Challenges of Free-Space Optical Systems.” Journal of Optical Communications 35, no. 4 , January 1, 2014
[40] Scott Bloom, Eric Korevaar, John Schuster, Heinz Willebrand, “Understanding the performance of free-space optics”, Optical Society of America, Vol. 2, No. 6, June 2003
[41] H. Henniger and O. Wilfert, "An Introduction to Free-space Optical Communications" , Radioengineering, Editorial Material vol. 19, no. 2, pp. 203-212, Jun 2010.
[42] A. Prokes, "Atmospheric effects on availability of free space optics systems", Optical Engineering, Article vol. 48, no. 6, p. 10, Jun 2009, Art. no. 066001.
[43] Dr. Heinz Willebrand, Free-space optics:Enabling Optical Connectivity in Today’s Networks, p. 49, January 2002
[44] R. Nebuloni, "Empirical relationships between extinction coefficient and visibility in fog", Applied Optics, Article vol. 44, no. 18, pp. 3795-3804, Jun 2005.
[45] P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology:Generation, Transmission, and Detection, J. Wiley & Sons, New York, 1962.
[46] M. Grabner and V. Kvicera, "The wavelength dependent model of extinction in fog and haze for free space optical communication", Optics Express, Article vol. 19, no. 4, pp. 3379-3386, Feb 2011.
[47] M. T. Dabiri, M. S. Sadough, and M. A. Khalighi, "Channel Modeling and Parameter Optimization for Hovering UAV-Based Free-Space Optical Links", Ieee Journal on Selected Areas in Communications, Article vol. 36, no. 9, pp. 2104-2113, Sep 2018.
[48] Kim, II, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," in Conference on Optical Wireless Communications III, Boston, Ma, 2000, vol. 4214, pp. 26-37, BELLINGHAM: Spie-Int Soc Optical Engineering, 2001.
[49] M. A. Esmail, H. Fathallah, and Ieee, "Improved Wavelength Independent Empirical Model for Fog Attenuation in FSO Communication Systems," in 7th International Conference on Information and Communication Systems (ICICS), Jordan Univ Sci & Technol, Irbid, JORDAN, 2016, pp. 196-200, NEW YORK: Ieee, 2016.
[50] V. Brazda, O. Fiser, V. Pek, P. Pesice, V. Schejbal, and Ieee, "Meteorological Measurement of Atmospheric Turbulence and FSO Link Attenuation - Preliminary Results," in 8th European Conference on Antennas and Propagation (EuCAP), Hague, NETHERLANDS, 2014, pp. 1046-+, NEW YORK: Ieee, 2014.
[51] 林松錦、郭富雄、李啟昌,「大氣亂流垂直觀測」,國立中央大學物理系,民國76年12月20日
[52] B. Moision et al., "Demonstration of free-space optical communication for long-range data links between balloons on Project Loon," in Conference on Free-Space Laser Communication and Atmospheric Propagation XXIX, San Francisco, CA, 2017, vol. 10096, BELLINGHAM: Spie-Int Soc Optical Engineering, 2017.
[53] F. Moll and M. Knapek, "Wavelength selection criteria and link availability due to cloud coverage statistics and attenuation affecting satellite, aerial, and downlink scenarios - art. no. 670916," in Conference on Free-Space Laser Communications VII, San Diego, CA, 2007, vol. 6709, pp. 70916-70916, BELLINGHAM: Spie-Int Soc Optical Engineering, 2007.
電子全文 電子全文(網際網路公開日期:20240622)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔