|
1. PARTNER, E.S. ENERGY STAR® Program Requirements for Televisions Partner Commitments Versions 4.0 and 5.0. 2. Hasebe, H. and S. Kobayashi. A full-color field sequential LCD using modulated backlight. in SID Symp. Dig. Tech. Papers. 1985. 3. Yoon, H.C., et al., Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS applied materials & interfaces, 2016. 8(28): p. 18189-18200. 4. Wang, K., et al. Large-scale brightness enhancement film with quantum rods aligned in polymeric nanofibers for high efficiency wide color gamut LED display. in Photonics Conference (IPC), 2015. 2015. IEEE. 5. Chen, H., F. Gou, and S.-T. Wu, Submillisecond-response nematic liquid crystals for augmented reality displays. Optical Materials Express, 2017. 7(1): p. 195-201. 6. Chavan, S.R., Augmented reality vs. virtual reality: differences and similarities. Int. J. Adv. Res. Comput. Eng. Technol, 2014. 5: p. 1-6. 7. Gross, A., et al. 11-4: Invited Paper: Direct View Optics for Near-Eye Displays. in SID Symposium Digest of Technical Papers. 2017. Wiley Online Library. 8. Yohso, A. and K. Ukai, How color break-up occurs in the human-visual system: The mechanism of the color break-up phenomenon. Journal of the Society for Information Display, 2006. 14(12): p. 1127-1133. 9. Huang, Y., et al., Optimized blue-phase liquid crystal for field-sequential-color displays. Optical Materials Express, 2017. 7(2): p. 641-650. 10. Cheng, H.-C., L. Rao, and S.-T. Wu, Color breakup suppression in field-sequential five-primary-color LCDs. Journal of display technology, 2010. 6(6): p. 229-234. 11. Zhang, Y., F.C. Lin, and E.H. Langendijk, A field-sequential-color display with a local-primary-desaturation backlight scheme. Journal of the Society for Information Display, 2011. 19(3): p. 258-264. 12. Lin, F.-C., Y. Zhang, and E.H. Langendijk, Color breakup suppression by local primary desaturation in field-sequential color LCDs. Journal of Display Technology, 2011. 7(2):p. 55-61. 13. Lin, F.-C., et al., High-image reproduction by the low-field-rate Stencil-LPD method for field-sequential-color LCDs. Journal of Display Technology, 2015. 11(12): p.1069-1075. 14. Lin, F.C., et al., Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs. Journal of the Society for Information Display, 2009. 17(3): p. 221-228. 15. Lin, F.C., et al. 15-2: Effective Color Breakup Suppression by a Low-Cost Global Dimming Backlight for Field-Sequential-Color Displays. in SID Symposium Digest of Technical Papers. 2016. Wiley Online Library. 16. Johnson, P.V., J. Kim, and M.S. Banks, The visibility of color breakup and a means to reduce it. Journal of vision, 2014. 14(14): p. 10-10. 17. Wang, J., et al., Simulation of color breakup based on measured display temporal responses. Journal of the Society for Information Display, 2017. 25(11): p. 653-662. 18. Järvenpää, T., Measuring color breakup of stationary images in field-sequential-color displays. Journal of the Society for Information Display, 2005. 13(2): p. 139-144. 19. Langendijk, E.H., G. Cennini, and O. Belik, Color-breakup evaluation of spatio- temporal color displays with two-and three-color fields. Journal of the Society for Information Display, 2009. 17(11): p. 933-940. 20. Yoshida, A., M. Kobayashi, and Y. Yoshida. 24.4: Subjective and Objective Assessments of Color Break-Up on Field Sequential Color Display Devices. in SID Symposium Digest of Technical Papers. 2011. Wiley Online Library. 21. Wang, J., et al., Color breakup visibility thresholds for 2-field sequential colors. Color Research & Application, 2017. 42(5): p. 580-590. 22. Cheng, Y.-K. and H.-P.D. Shieh, Relative contrast sensitivity for color break-up evaluation in field-sequential-color LCDs. Journal of Display Technology, 2009. 5(10): p. 379-384. 23. Zhang, Y., et al., A new color breakup measure based on color difference between fields and contrast to the surrounding. Journal of Display Technology, 2012. 8(3): p. 145-153. 24. Kim, J.U., et al. Evaluation of static color breakup for natual images on field sequential displays. in Color Imaging XIX: Displaying, Processing, Hardcopy, and Applications. 2014. International Society for Optics and Photonics. 25. Yang, C.-M., et al., Content-dependent reduction of static color breakup on field sequential color LCDs. Journal of Display Technology, 2016. 12(7): p. 673-680. 26. Post, D.L., P. Monnier, and C.S. Calhoun. Predicting color breakup on field-sequential displays. in Head-Mounted Displays II. 1997. International Society for Optics and Photonics. 27. Schiller, P.H., The neural control of visually guided eye movements, in Cognitive neuroscience of attention. 1998, Psychology Press. p. 13-60. 28. Tatler, B.W., et al., Yarbus, eye movements, and vision. i-Perception, 2010. 1(1): p. 7-27. 29. Yamakita, H., et al. Field-sequential color LCD driven by optimized method for color breakup reduction. in Int. Display Workshop. 2005. 30. Sekiya, K., T. Miyashita, and T. Uchida. L-4: Late-News Paper: A Simple and Practical Way to Cope With Color Breakup on Field Sequential Color LCDs. in SID Symposium Digest of Technical Papers. 2006. Wiley Online Library. 31. Lin, F.-C., et al., Color filter-less LCDs in achieving high contrast and low power consumption by stencil field-sequential-color method. Journal of display technology, 2010. 6(3): p. 98-106. 32. Lin, F.-C., Y.-P. Huang, and H.-P.D. Shieh, Color breakup reduction by 180 Hz stencil-FSC method in large-sized color filter-less LCDs. Journal of display technology, 2010. 6(3): p. 107-112. 33. Qin, Z., et al., Evaluation of a Transparent Display's Pixel Structure Regarding Subjective Quality of Diffracted See-Through Images. IEEE Photonics Journal, 2017. 9(4): p. 1-14. 34. Zhang, L., et al., FSIM: a feature similarity index for image quality assessment. IEEE transactions on Image Processing, 2011. 20(8): p. 2378-2386. 35. Zhang, L., Y. Shen, and H. Li, VSI: A visual saliency-induced index for perceptual image quality assessment. IEEE Transactions on Image Processing, 2014. 23(10): p. 4270-4281. 36. Harel, J., C. Koch, and P. Perona. Graph-based visual saliency. in Advances in neural information processing systems. 2007. 37. Sekiya, K., et al. LP-4: Late-News Poster: Overdrive for Compensating Color-Shift on Field Sequential Color TFT-LCDs. in SID Symposium Digest of Technical Papers. 2004. Wiley Online Library. 38. Feng, X.f., H. Pan, and S. Daly, Dynamic gamma: Application to LCD motion-blur reduction. Journal of the Society for Information Display, 2006. 14(10): p. 949-956. 39. Kundu, D. and B.L. Evans. Full-reference visual quality assessment for synthetic images: A subjective study. in Image Processing (ICIP), 2015 IEEE International Conference on. 2015. IEEE. 40. Wang, Z., E. Simoncelli, and A. Bovik. Multi-scale structural similarity for image quality assessment. in ASILOMAR CONFERENCE ON SIGNALS SYSTEMS AND COMPUTERS. 2003. IEEE; 1998. 41. Gonzalez, R.C., R.E. Woods, and S.L. Eddins, Digital Image Processing Using MATLAB®. 2009: Gatesmark Publishing. 42. Tada, M., K. Hirai, and T. Horiuchi. 5.2: Simulation of Color Breakup Perception using Eye-Tracking Data. in SID Symposium Digest of Technical Papers. 2015. Wiley Online Library. 43. Foulsham, T. and G. Underwood, What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. Journal of vision, 2008. 8(2): p. 6-6. 44. Sun, X., H. Yao, and R. Ji. What are we looking for: Towards statistical modeling of saccadic eye movements and visual saliency. in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. 2012. IEEE. 45. Ponomarenko, N., et al., TID2008-a database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics, 2009. 10(4): p. 30-45.
|