跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 11:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林映汝
研究生(外文):Lin, Ying Ju
論文名稱:利用主視覺顯著區演算法建立影像色分離指標 應用於色序型顯示器
論文名稱(外文):Image Content Adaptive Color Breakup Index for Field Sequential Color Displays Using a Dominant Visual Saliency Method
指導教授:黃乙白黃乙白引用關係謝漢萍謝漢萍引用關係
指導教授(外文):Huang, Yi-PaiShieh, Han-Pin
口試委員:鄧清龍陳政寰范姜冠旭
口試委員(外文):Deng,Cing-LongChen, Jheng-HuanFan Jiang, Guan-Syu
口試日期:2018-7-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:68
中文關鍵詞:色序型顯示器色分離指標視覺顯著區
外文關鍵詞:Field Sequential Color DisplayColor Breakup IndexVisual Saliency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
色序型顯示器(Field Sequential Color Displays, FSC Displays)是一種具有高光效率、 廣色域的新型顯示器,然而高頻率快速切換色場會造成嚴重的色分離(Color Breakup)問 題,色分離不僅會影響影像品質,更會使觀察者產生視覺疲勞。目前已經有許多解決色 分離的演算法被提出,但這些演算法通常僅應用於評估固定的單色色塊或色塊組合,並 不能適用於各種自然影像內容中。色序型顯示器可以應用的範圍相當廣泛,例如低耗能 顯示器、微型投影機、虛擬實境等,因此能應用於各種影像內容的「色分離指標」是相 當有價值與重要的。
為了制定一個新的色分離指標,首先需要建立一個影像資料庫作為人因實驗與影像 分析的根據,由於先前幾乎沒有專門用於色分離的影像資料庫被提出,在本研究的一開 始先提出了一個資料庫,其包含二十五張具有不同圖像內容的參考影像,以及一百二十 五張具有各種色分離可見度表現的測試影像。接著,透過使用 240Hz 液晶顯示器進行人 因實驗來獲取測試影像的主觀色分離分數,同時利用電腦模擬視網膜成像去做影像比對 分析得到客觀評分。基於視覺顯著性理論,加上考慮到人眼動態視覺可能會導致視覺關 注區域被限制,本研究提出了「主要視覺顯著理論(Dominant Visual Saliency Theorem)」 以及構築於該理論之上的色分離可見度計算模型,意旨影像整體的色分離可見度應該由具有一定閾值的更顯著視覺區域決定,而非單純由視覺顯著區決定。
透過整合主、客觀兩方數據並根據所提出的理論,主、客觀間色分離可見度之線性 相關係數高達 0.82,表明了此理論的正確性及指標的可靠性。另外,此色分離評估指標 被用於預測當今主流 FSC 演算法之色分離可見度,以驗證各演算法在色分離抑制方面的 表現。這種嶄新色分離評估指標可以適應來自各種不同影像內容,並有望作為色序法顯 示器未來相關應用的實現標準。
Field sequential color (FSC) displays have advantages of high optical throughputs, high spatial resolution, and wide color gamut. However, the high frequency of sequentially flashing multiple color fields causes a fatal issue, called color breakup (CBU). Therefore, a number of studies have been dedicated to developing indices that can predict the perceptual visibility of color breakup for varying image content, while the current color breakup indices are usually for fixed colored blocks or patterns.
Because few image databases for color breakup research have been proposed, to solve this problem, an image database containing 25 reference images with diverse image contents and 125 test cases with various color breakup visibility was first established. Next, visual experiments were conducted to acquire the subjective color breakup scores of the test cases by using a 240 Hz liquid crystal display. By considering that the subject dynamic eye saccades may cause constrained visual saliency compared to static viewing, a new theorem, as dominant visual saliency theorem (DVS theorem), based on visual saliency theory (VS theory), was proposed and a computational model of color breakup visibility was also
developed based on the proposed DVS theorem. The main concept of the DVS theorem is that 3
the color breakup perception is mainly determined by the image regions with visual saliency values higher than a certain threshold.
According to the proposed theorem, an analysis of the objective and subjective results revealed a Pearson linear correlation coefficient as high as 0.82, which matches the top-level image quality assessment algorithms, revealing it to be a reliable index. In addition, the proposed color breakup index was used to benchmark against several mainstream FSC algorithms to determine their performances in color breakup suppression. Consequently, this unprecedented image-content-adaptive index for color breakup assessment is promising for being a criterion for FSC-related devices—low power displays, micro projectors and virtual/augmented reality devices, etc.
摘 要.................................................................................................................. I Abstract........................................................................................................... III
誌謝.................................................................................................................. V Contents ........................................................................................................ VI Figure Captions ............................................................................................ VIII
List of Tables...................................................................................................XII

Chapter 1 Introduction ....................................................................................1
1.1 Preface:Field-Sequential-Color Displays.....................................................1
1.2 Color Breakup (CBU) Phenomenon ............................................................4
1.3 Motivation and Objective .........................................................................6
1.4 Organization of the Thesis ........................................................................9

Chapter 2 Principle of Field Sequential Color Displays ................................... 10
2.1Human Vision System ..................................................................................10
2.1.1 Human Eye Structure................................................................................10
2.1.2 Types of Eye Movements .........................................................................12
2.1.3 Color Breakup Visibility...........................................................................13
2.2 Prior Color Breakup Suppression Methods ..............................................14
2.2.1 Stencil-FSC ...............................................................................................17
2.2.2 Local Primary Desaturation (LPD)...........................................................19
2.2.3 Edge-Directed FSC ...................................................................................21
2.3 Prior Color Breakup Assessment Index.........................................................22 2.4 Full-Reference Image Quality Assessment (FR-IQA)....................................23
2.4.1 Structural Similarity (SSIM) Index...........................................................24
2.5 Overdrive for the FSC-LCDs......................................................................25

Chapter 3 Methods and Experiment Setup ..................................................... 28
3.1 Image Database Establishment for Color Breakup Assessment ..................28
3.1.1 Collection of Reference Images................................................................28
3.1.2 Image Selection Standard .........................................................................29
3.1.3 Generation of Various Color Breakup Visibility ......................................34
3.2 Subjective Color Breakup Visibility ...........................................................36
3.2.1 Apparatus ..................................................................................................36
3.2.2 Visual Experiments...................................................................................37
3.3 Objective Color Breakup Visibility ..............................................................38
3.3.1 Rotating Camera System...........................................................................39
3.3.2 Simulation of Retinal Images with Color Breakup...................................40
3.3.3 Color Breakup Index based on Dominant Visual Saliency ......................42
3.3.4 Calculation Flowchart...............................................................................43
3.4 Summary.....................................................................................................45

Chapter 4 Results and Discussion ............................................................. 47
4.1 Verification Methods ..........................................................................47
4.2 Optimization for Threshold Value...................................................48
4.3 Correlation Results............................................................................49
4.4 Discussion ........................................................................................51
4.4.1 Benchmark against Color-Breakup-Suppressed FSC Algorithms............51
4.4.2 Influence of Image Content on Color Breakup.........................................53
4.5 Summary ..................................................................................................58

Chapter 5 Conclusions and Future Work ........................................................ 59
5.1 Conclusions ...................................................................................................59 5.2 Future Work....................................................................................................63
5.2.1 Enhancement of Proposed Database.........................................................63
5.2.2 Eyetraking System for Accurate Eye Fixation..........................................63

Reference ....................................................................................................65
1. PARTNER, E.S. ENERGY STAR® Program Requirements for Televisions Partner Commitments Versions 4.0 and 5.0.
2. Hasebe, H. and S. Kobayashi. A full-color field sequential LCD using modulated backlight. in SID Symp. Dig. Tech. Papers. 1985.
3. Yoon, H.C., et al., Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS applied materials & interfaces, 2016. 8(28): p. 18189-18200.
4. Wang, K., et al. Large-scale brightness enhancement film with quantum rods aligned in polymeric nanofibers for high efficiency wide color gamut LED display. in Photonics Conference (IPC), 2015. 2015. IEEE.
5. Chen, H., F. Gou, and S.-T. Wu, Submillisecond-response nematic liquid crystals for augmented reality displays. Optical Materials Express, 2017. 7(1): p. 195-201.
6. Chavan, S.R., Augmented reality vs. virtual reality: differences and similarities. Int. J. Adv. Res. Comput. Eng. Technol, 2014. 5: p. 1-6.
7. Gross, A., et al. 11-4: Invited Paper: Direct View Optics for Near-Eye Displays. in SID Symposium Digest of Technical Papers. 2017. Wiley Online Library.
8. Yohso, A. and K. Ukai, How color break-up occurs in the human-visual system: The mechanism of the color break-up phenomenon. Journal of the Society for Information Display, 2006. 14(12): p. 1127-1133.
9. Huang, Y., et al., Optimized blue-phase liquid crystal for field-sequential-color displays. Optical Materials Express, 2017. 7(2): p. 641-650.
10. Cheng, H.-C., L. Rao, and S.-T. Wu, Color breakup suppression in field-sequential five-primary-color LCDs. Journal of display technology, 2010. 6(6): p. 229-234.
11. Zhang, Y., F.C. Lin, and E.H. Langendijk, A field-sequential-color display with a local-primary-desaturation backlight scheme. Journal of the Society for Information Display, 2011. 19(3): p. 258-264.
12. Lin, F.-C., Y. Zhang, and E.H. Langendijk, Color breakup suppression by local primary desaturation in field-sequential color LCDs. Journal of Display Technology, 2011. 7(2):p. 55-61.
13. Lin, F.-C., et al., High-image reproduction by the low-field-rate Stencil-LPD method for field-sequential-color LCDs. Journal of Display Technology, 2015. 11(12): p.1069-1075.
14. Lin, F.C., et al., Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs. Journal of the Society for Information Display, 2009. 17(3): p. 221-228.
15. Lin, F.C., et al. 15-2: Effective Color Breakup Suppression by a Low-Cost Global Dimming Backlight for Field-Sequential-Color Displays. in SID Symposium Digest of Technical Papers. 2016. Wiley Online Library.
16. Johnson, P.V., J. Kim, and M.S. Banks, The visibility of color breakup and a means to reduce it. Journal of vision, 2014. 14(14): p. 10-10.
17. Wang, J., et al., Simulation of color breakup based on measured display temporal responses. Journal of the Society for Information Display, 2017. 25(11): p. 653-662.
18. Järvenpää, T., Measuring color breakup of stationary images in field-sequential-color displays. Journal of the Society for Information Display, 2005. 13(2): p. 139-144.
19. Langendijk, E.H., G. Cennini, and O. Belik, Color-breakup evaluation of spatio- temporal color displays with two-and three-color fields. Journal of the Society for Information Display, 2009. 17(11): p. 933-940.
20. Yoshida, A., M. Kobayashi, and Y. Yoshida. 24.4: Subjective and Objective Assessments of Color Break-Up on Field Sequential Color Display Devices. in SID Symposium Digest of Technical Papers. 2011. Wiley Online Library.
21. Wang, J., et al., Color breakup visibility thresholds for 2-field sequential colors. Color Research & Application, 2017. 42(5): p. 580-590.
22. Cheng, Y.-K. and H.-P.D. Shieh, Relative contrast sensitivity for color break-up evaluation in field-sequential-color LCDs. Journal of Display Technology, 2009. 5(10): p. 379-384.
23. Zhang, Y., et al., A new color breakup measure based on color difference between fields and contrast to the surrounding. Journal of Display Technology, 2012. 8(3): p. 145-153.
24. Kim, J.U., et al. Evaluation of static color breakup for natual images on field sequential displays. in Color Imaging XIX: Displaying, Processing, Hardcopy, and Applications.
2014. International Society for Optics and Photonics.
25. Yang, C.-M., et al., Content-dependent reduction of static color breakup on field sequential color LCDs. Journal of Display Technology, 2016. 12(7): p. 673-680. 26. Post, D.L., P. Monnier, and C.S. Calhoun. Predicting color breakup on field-sequential displays. in Head-Mounted Displays II. 1997. International Society for Optics and Photonics.
27. Schiller, P.H., The neural control of visually guided eye movements, in Cognitive
neuroscience of attention. 1998, Psychology Press. p. 13-60.
28. Tatler, B.W., et al., Yarbus, eye movements, and vision. i-Perception, 2010. 1(1): p. 7-27.
29. Yamakita, H., et al. Field-sequential color LCD driven by optimized method for color breakup reduction. in Int. Display Workshop. 2005.
30. Sekiya, K., T. Miyashita, and T. Uchida. L-4: Late-News Paper: A Simple and Practical Way to Cope With Color Breakup on Field Sequential Color LCDs. in SID Symposium Digest of Technical Papers. 2006. Wiley Online Library.
31. Lin, F.-C., et al., Color filter-less LCDs in achieving high contrast and low power consumption by stencil field-sequential-color method. Journal of display technology, 2010. 6(3): p. 98-106.
32. Lin, F.-C., Y.-P. Huang, and H.-P.D. Shieh, Color breakup reduction by 180 Hz stencil-FSC method in large-sized color filter-less LCDs. Journal of display technology, 2010. 6(3): p. 107-112.
33. Qin, Z., et al., Evaluation of a Transparent Display's Pixel Structure Regarding Subjective Quality of Diffracted See-Through Images. IEEE Photonics Journal, 2017. 9(4): p. 1-14.
34. Zhang, L., et al., FSIM: a feature similarity index for image quality assessment. IEEE transactions on Image Processing, 2011. 20(8): p. 2378-2386.
35. Zhang, L., Y. Shen, and H. Li, VSI: A visual saliency-induced index for perceptual image quality assessment. IEEE Transactions on Image Processing, 2014. 23(10): p. 4270-4281.
36. Harel, J., C. Koch, and P. Perona. Graph-based visual saliency. in Advances in neural information processing systems. 2007.
37. Sekiya, K., et al. LP-4: Late-News Poster: Overdrive for Compensating Color-Shift on Field Sequential Color TFT-LCDs. in SID Symposium Digest of Technical Papers. 2004. Wiley Online Library.
38. Feng, X.f., H. Pan, and S. Daly, Dynamic gamma: Application to LCD motion-blur reduction. Journal of the Society for Information Display, 2006. 14(10): p. 949-956.
39. Kundu, D. and B.L. Evans. Full-reference visual quality assessment for synthetic images: A subjective study. in Image Processing (ICIP), 2015 IEEE International Conference on. 2015. IEEE.
40. Wang, Z., E. Simoncelli, and A. Bovik. Multi-scale structural similarity for image quality assessment. in ASILOMAR CONFERENCE ON SIGNALS SYSTEMS AND COMPUTERS. 2003. IEEE; 1998.
41. Gonzalez, R.C., R.E. Woods, and S.L. Eddins, Digital Image Processing Using MATLAB®. 2009: Gatesmark Publishing.
42. Tada, M., K. Hirai, and T. Horiuchi. 5.2: Simulation of Color Breakup Perception using Eye-Tracking Data. in SID Symposium Digest of Technical Papers. 2015. Wiley Online Library.
43. Foulsham, T. and G. Underwood, What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. Journal of vision, 2008. 8(2): p. 6-6.
44. Sun, X., H. Yao, and R. Ji. What are we looking for: Towards statistical modeling of saccadic eye movements and visual saliency. in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. 2012. IEEE.
45. Ponomarenko, N., et al., TID2008-a database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics, 2009. 10(4): p. 30-45.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top