|
[1] L. E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321 (2008) 1457-1461. [2] J. P. Heremans, V. Jovovic, E. S. Toberer, et al., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science, 321 (2008) 554-557. [3] D. M. Rowe., Thermoelectrics handbook: macro to nano: CRC press., 1st ed., Boca Raton, CRC Press, 2005 [4] K. Uchida, S. Takahashi, K. Harii, et al., Observation of the spin Seebeck effect, Nature, 455 (2008) 778. [5] Y. G. Gurevich, JE. Velazquez-Perez, Peltier Effect in Semiconductors, Wiley Encyclopedia of Electrical and Electronics Engineering, (1999) 1-21. [6] T. M. Tritt, Thermoelectric phenomena, materials, and applications, Annual review of materials research, 41 (2011) 433-448. [7] J. R. Szczech, J. M. Higgins, S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials, Journal of Materials Chemistry, 21 (2011) 4037-4055. [8] M. Hamid Elsheikh, D. A. Shnawah, M. F. M. Sabri, et al., A review on thermoelectric renewable energy: Principle parameters that affect their performance, Renewable and Sustainable Energy Reviews, 30 (2014) 337-355. [9] D. Kraemer, J. Sui, K. McEnaney, et al., High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts, Energy & Environmental Science, 8 (2015) 1299-1308. [10] D. K. Aswal, R. Basu, A. Singh, Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects, Energy Conversion and Management, 114 (2016) 50-67. [11] J. He, T. M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward, Science, 357 (2017) 6358-9997 [12] K. F. Hsu, S. Loo, F. Guo, et al., Cubic AgPbmSbTe2+ m: bulk thermoelectric materials with high figure of merit, Science, 303 (2004) 818-821. [13] G. A. Slack, M. A. Hussain, The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators, Journal of applied physics, 70 (1991) 2694-2718. [14] D. M. S., C. G., T. M. Y., et al., New directions for low-dimensional thermoelectric materials, Advanced Materials, 19 (2007) 1043-1053. [15] V. C. J., S. Ali, M. Arun, et al., Nanostructured thermoelectrics: big efficiency gains from small features, Advanced Materials, 22 (2010) 3970-3980. [16] X. L. Wu, J. Y. Fan, T. Qiu, et al., Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites, Physical Review Letters, 94 (2005) 026102. [17] P. Pichanusakorn, P. Bandaru, Nanostructured thermoelectrics, Materials Science and Engineering: R: Reports, 67 (2010) 19-63. [18] K. Kishimoto, M. Tsukamoto, T. Koyanagi, Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering, Journal of applied physics, 92 (2002) 5331-5339. [19] Z. Qihao, A. Xin, W. Lianjun, et al., Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure, Advanced Functional Materials, 25 (2015) 966-976. [20] Y. Zhang, G. D. Stucky, Heterostructured approaches to efficient thermoelectric materials, Chemistry of Materials, 26 (2014) 837-848. [21] S. V. Faleev, F. Léonard, Theory of enhancement of thermoelectric properties of materials with nanoinclusions, Physical Review B, 77 (2008) 214304. [22] A. Popescu, L. M. Woods, J. Martin, et al., Model of transport properties of thermoelectric nanocomposite materials, Physical Review B, 79 (2009) 205302. [23] J. Zhou, X. Li, G. Chen, et al., Semiclassical model for thermoelectric transport in nanocomposites, Physical Review B, 82 (2010) 115308. [24] Y. Zhang, M. L. Snedaker, C. S. Birkel, et al., Silver-based intermetallic heterostructures in Sb2Te3 thick films with enhanced thermoelectric power factors, Nano Letters, 12 (2012) 1075-1080. [25] D.-K. Ko, Y. Kang, C. B. Murray, Enhanced thermopower via carrier energy filtering in solution-processable Pt–Sb2Te3 nanocomposites, Nano Letters, 11 (2011) 2841-2844. [26] M. He, J. Ge, Z. Lin, et al., Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface, Energy & Environmental Science, 5 (2012) 8351-8358. [27] L.-D. Zhao, V. P. Dravid, M. G. Kanatzidis, The panoscopic approach to high performance thermoelectrics, Energy & Environmental Science, 7 (2014) 251-268. [28] Z. Yichi, B. Je-Hyeong, L. Joun, et al., Hot carrier filtering in solution processed heterostructures: A paradigm for improving thermoelectric efficiency, Advanced Materials, 26 (2014) 2755-2761. [29] W. T. Mozet., Investigation of fundamental growth mechanisms in pulsed laser deposition synthesis of nanostructured materials, ProQuest Dissertations And Theses, 2016 [30] D. M. Rowe., Thermoelectrics handbook: macro to nano: CRC press., 1st ed., Boca Raton, CRC Press, 2005 [31] J. Ko, J.-Y. Kim, S.-M. Choi, et al., Nanograined thermoelectric Bi2Te2.7Se0.3 with ultralow phonon transport prepared from chemically exfoliated nanoplatelets, Journal of Materials Chemistry A, 1 (2013) 12791-12796. [32] W. Xie, J. He, H. J. Kang, et al., Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 Nanocomposites, Nano Letters, 10 (2010) 3283-3289. [33] K. Sang Il, A. Kyunghan, Y. Dong-Hee, et al., Enhancement of seebeck coefficient in Bi0.5Sb1.5Te3 with high-density Tellurium nanoinclusions, Applied Physics Express, 4 (2011) 091801. [34] S. Hwang, S.-I. Kim, K. Ahn, et al., Enhancing the thermoelectric properties of p-type bulk Bi-Sb-Te Nanocomposites via solution-based metal nanoparticle decoration, Journal of Electronic Materials, 42 (2013) 1411-1416. [35] S. Sumithra, N. J. Takas, W. M. Nolting, et al., Effect of NiTe nanoinclusions on thermoelectric properties of Bi2Te3, Journal of Electronic Materials, 41 (2012) 1401-1407. [36] T. Zhang, J. Jiang, Y. Xiao, et al., In situ precipitation of Te nanoparticles in p-type BiSbTe and the effect on thermoelectric performance, ACS Applied Materials & Interfaces, 5 (2013) 3071-3074. [37] S. Li, T. Fan, X. Liu, et al., Graphene quantum dots embedded in Bi2Te3 nanosheets to enhance thermoelectric performance, ACS Applied Materials & Interfaces, 9 (2017) 3677-3685. [38] S. Sumithra, N. J. Takas, D. K. Misra, et al., Enhancement in thermoelectric figure of merit in nanostructured Bi2Te3 with semimetal nanoinclusions, Advanced Energy Materials, 1 (2011) 1141-1147. [39] Y. C. Dou, X. Y. Qin, D. Li, et al., Enhanced thermoelectric performance of BiSbTe-based composites incorporated with amorphous Si3N4 nanoparticles, RSC Advances, 5 (2015) 34251-34256. [40] Y. C. Dou, X. Y. Qin, D. Li, et al., Enhanced thermopower and thermoelectric performance through energy filtering of carriers in (Bi2Te3)0.2(Sb2Te3)0.8 bulk alloy embedded with amorphous SiO2 nanoparticles, Journal of Applied Physics, 114 (2013) 044906. [41] B. Madavali, H. Kim, K. Lee, et al., Enhanced thermoelectric figure-of-merit in Bi-Sb-Te nanocomposites with homogenously dispersed oxide ceramic ZrO2 nanoparticles, Journal of Applied Physics, 121 (2017) 225104. [42] E. B. Kim, P. Dharmaiah, D. Shin, et al., Enhanced thermoelectric performance through carrier scattering at spherical nanoparticles in Bi0.5Sb1.5Te3/Ta2O5 composites, Journal of Alloys and Compounds, 703 (2017) 614-623. [43] H.-C. Chang, C.-H. Chen, Y.-K. Kuo, Great enhancements in the thermoelectric power factor of BiSbTe nanostructured films with well-ordered interfaces, Nanoscale, 5 (2013) 7017-7025. [44] W. Zhu, Y. Deng, Y. Wang, et al., Preferential growth transformation of Bi0.5Sb1.5Te3 films induced by facile post-annealing process: Enhanced thermoelectric performance with layered structure, Thin Solid Films, 556 (2014) 270-276. [45] Z. Sun, S. Liufu, X. Chen, et al., Enhanced thermoelectric properties of Bi0.5Sb1.5Te3 films by chemical vapor transport process, ACS Applied Materials & Interfaces, 3 (2011) 1390-1393. [46] M. Takashiri, S. Tanaka, K. Miyazaki, Improved thermoelectric performance of highly-oriented nanocrystalline bismuth antimony telluride thin films, Thin Solid Films, 519 (2010) 619-624. [47] Z. Yun, Z. Qiang, S. Xianli, et al., Mechanically robust BiSbTe alloys with superior thermoelectric performance: A case study of stable hierarchical nanostructured thermoelectric materials, Advanced Energy Materials, 5 (2015) 1401391. [48] W. Xie, J. He, H. J. Kang, et al., Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites, Nano Letters, 10 (2010) 3283-3289. [49] S. Fan, J. Zhao, J. Guo, et al., P-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit, Applied Physics Letters, 96 (2010) 182104. [50] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669. [51] S. Park, J. An, I. Jung, et al., Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents, Nano Letters, 9 (2009) 1593-1597. [52] M. D. Stoller, S. Park, Y. Zhu, et al., Graphene-based ultracapacitors, Nano Letters, 8 (2008) 3498-3502. [53] C. Lee, X. Wei, J. W. Kysar, et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (2008) 385-388. [54] A. A. Balandin, S. Ghosh, W. Bao, et al., Superior thermal conductivity of single-layer graphene, Nano Letters, 8 (2008) 902-907. [55] X. Ni, G. Liang, J.-S. Wang, et al., Disorder enhances thermoelectric figure of merit in armchair graphene nanoribbons, Applied Physics Letters, 95 (2009) 192114. [56] J. Y. Kim, J.-H. Lee, J. C. Grossman, Thermal transport in functionalized graphene, ACS Nano, 6 (2012) 9050-9057. [57] H. Sevinçli, C. Sevik, T. Çağın, et al., A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons, Scientific Reports, 3 (2013) 1228. [58] J. Dong, W. Liu, H. Li, et al., In situ synthesis and thermoelectric properties of PbTe–graphene nanocomposites by utilizing a facile and novel wet chemical method, Journal of Materials Chemistry A, 1 (2013) 12503-12511. [59] B. Feng, J. Xie, G. Cao, et al., Enhanced thermoelectric properties of p-type CoSb3/graphene nanocomposite, Journal of Materials Chemistry A, 1 (2013) 13111-13119. [60] H. Ju, J. Kim, The effect of temperature on thermoelectric properties of n-type Bi2Te3 nanowire/graphene layer-by-layer hybrid composites, Dalton Transactions, 44 (2015) 11755-11762. [61] C. Li, X. Qin, Y. Li, et al., Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric nanocomposite, Journal of Alloys and Compounds, 661 (2016) 389-395. [62] D. Suh, S. Lee, H. Mun, et al., Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport, Nano Energy, 13 (2015) 67-76. [63] N. Xiao, X. Dong, L. Song, et al., Enhanced thermopower of graphene films with oxygen plasma treatment, ACS Nano, 5 (2011) 2749-2755. [64] D. Sim, D. Liu, X. Dong, et al., Power factor enhancement for few-layered graphene films by molecular attachments, The Journal of Physical Chemistry C, 115 (2011) 1780-1785. [65] Y. Lu, Y. Song, F. Wang, Thermoelectric properties of graphene nanosheets-modified polyaniline hybrid nanocomposites by an in situ chemical polymerization, Materials Chemistry and Physics, 138 (2013) 238-244. [66] L. Wang, F. Liu, C. Jin, et al., Preparation of polypyrrole/graphene nanosheets composites with enhanced thermoelectric properties, RSC Advances, 4 (2014) 46187-46193. [67] K. Xu, G. Chen, D. Qiu, Convenient construction of poly (3,4-ethylenedioxythiophene)–graphene pie-like structure with enhanced thermoelectric performance, Journal of Materials Chemistry A, 1 (2013) 12395-12399. [68] L. Wang, Q. Yao, H. Bi, et al., PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering, Journal of Materials Chemistry A, 3 (2015) 7086-7092. [69] K. T. Kim, S. Y. Choi, E. H. Shin, et al., The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite, Carbon, 52 (2013) 541-549. [70] Q. Lognoné, F. Gascoin, On the effect of carbon nanotubes on the thermoelectric properties of n-Bi2Te2.4Se0.6 made by mechanical alloying, Journal of Alloys and Compounds, 635 (2015) 107-111. [71] D.-H. Park, M.-Y. Kim, T.-S. Oh, Thermoelectric energy-conversion characteristics of n-type Bi2(Te,Se)3 nanocomposites processed with carbon nanotube dispersion, Current Applied Physics, 11 (2011) S41-S45. [72] H. Bark, J.-S. Kim, H. Kim, et al., Effect of multiwalled carbon nanotubes on the thermoelectric properties of a bismuth telluride matrix, Current Applied Physics, 13 (2013) S111-S114. [73] K. Ahmad, C. Wan, M. A. Al-Eshaikh, Effect of uniform dispersion of single-wall carbon nanotubes on the thermoelectric properties of BiSbTe-based nanocomposites, Journal of Electronic Materials, 46 (2017) 1348-1357. [74] N. Farahi, S. Prabhudev, M. Bugnet, et al., Enhanced figure of merit in Mg2Si0.877Ge0.1Bi0.023/multi wall carbon nanotube nanocomposites, RSC Advances, 5 (2015) 65328-65336. [75] D. N. Truong, H. Kleinke, F. Gascoin, Thermoelectric properties of higher manganese silicide/multi-walled carbon nanotube composites, Dalton Transactions, 43 (2014) 15092-15097. [76] Y. Yeo, T. Oh, Thermoelectric properties of p-type (Bi,Sb)2Te3 nanocomposites dispersed with multiwall carbon nanotubes, Materials Research Bulletin, 58 (2014) 54-58. [77] N. Gothard, J. Spowart, T. Tritt, Thermal conductivity reduction in fullerene‐enriched p‐type bismuth telluride composites, Physica Status Solidi (a), 207 (2010) 157-162. [78] N. Gothard, T. Tritt, J. Spowart, Figure of merit enhancement in bismuth telluride alloys via fullerene-assisted microstructural refinement, Journal of Applied Physics, 110 (2011) 023706. [79] V. Kulbachinskii, V. Kytin, M. Y. Popov, et al., Composites of Bi2–xSbxTe3 nanocrystals and fullerene molecules for thermoelectricity, Journal of Solid State Chemistry, 193 (2012) 64-70. [80] X. Shi, L. Chen, J. Yang, et al., Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering, Applied Physics Letters, 84 (2004) 2301-2303. [81] X. Shi, L. Chen, S. Bai, et al., Influence of fullerene dispersion on high temperature thermoelectric properties of BayCo4Sb12-based composites, Journal of Applied Physics, 102 (2007) 103709. [82] D. Xie, J. Xu, G. Liu, et al., Synergistic optimization of thermoelectric performance in p-type Bi0.48Sb1.52Te3/graphene composite, Energies, 9 (2016) 236. [83] C. Li, X. Qin, Y. Li, et al., Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric nanocomposite, Journal of Alloys and Compounds, 661 (2016) 389-395. [84] M. Y. Kim, Y. H. Yeo, D. H. Park, et al., Thermoelectric characteristics of the (Bi,Sb)2(Te,Se)3 nanocomposites processed with nanoparticle dispersion, Ceramics International, 38 (2012) S529-S533. [85] V. Blank, S. Buga, V. Kulbachinskii, et al., Thermoelectric properties of Bi0.5Sb1.5Te3/C60 nanocomposites, Physical Review B, 86 (2012) 075426. [86] J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering: R: Reports, 37 (2002) 129-281. [87] A. C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 362 (2004) 2477-2512. [88] T.-H. Chen, P.-H. Chen, C.-H. Chen, Laser co-ablation of bismuth antimony telluride and diamond-like carbon nanocomposites for enhanced thermoelectric performance, Journal of Materials Chemistry A, 6 (2018) 982-990. [89] H.-C. Chang, C.-H. Chen, Y.-K. Kuo, Great enhancements in the thermoelectric power factor of BiSbTe nanostructured films with well-ordered interfaces, Nanoscale, 5 (2013) 7017-7025. [90] T.-H. Chen, P.-Y. Lin, H.-C. Chang, et al., Enhanced thermoelectricity of three-dimensionally mesostructured BixSb2− xTe3 nanoassemblies: from micro-scaled open gaps to isolated sealed mesopores, Nanoscale, 9 (2017) 3283-3292. [91] W. Richter, C. Becker, A Raman and far‐infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2 (Te1− xSex)3 (0< x< 1),(Bi1− ySby)2Te3 (0< y< 1), Physica Status Solidi (b), 84 (1977) 619-628. [92] S.-H. Hong, J. Winter, Micro-Raman spectroscopy on a-C: H nanoparticles, Journal of applied physics, 98 (2005) 124304. [93] D. Teweldebrhan, V. Goyal, A. A. Balandin, Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals, Nano Letters, 10 (2010) 1209-1218. [94] W. Yim, F. Rosi, Compound tellurides and their alloys for peltier cooling—A review, Solid-State Electronics, 15 (1972) 1121-1140. [95] Y. Li, D. Li, X. Qin, et al., Enhanced thermoelectric performance through carrier scattering at heterojunction potentials in BiSbTe based composites with Cu3SbSe4 nanoinclusions, Journal of Materials Chemistry C, 3 (2015) 7045-7052. [96] S. Li, C. Xin, X. Liu, et al., 2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance, Nano Energy, 30 (2016) 780-789. [97] J. Zhang, X. Qin, D. Li, et al., Enhanced thermoelectric performance of CuGaTe2 based composites incorporated with graphite nanosheets, Applied Physics Letters, 108 (2016) 073902. [98] Y. Tang, Z. M. Gibbs, L. A. Agapito, et al., Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites, Nature materials, 14 (2015) 1223. [99] T. Zou, X. Qin, Y. Zhang, et al., Enhanced thermoelectric performance of β-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering, Scientific reports, 5 (2015) 17803. [100] J. Floess, S. Oleksy, K. Lee, Low temperature oxidation reaction of microporous carbons, Prepr. Pap., Am. Chem. Soc., Div. Fuel Chem., 34 (1989) [101] T. Karabacak, J. P. Singh, Y. P. Zhao, et al., Scaling during shadowing growth of isolated nanocolumns, Physical Review B, 68 (2003) 125408. [102] D. Medlin, Q. Ramasse, C. Spataru, et al., Structure of the (0001) basal twin boundary in Bi2Te3, Journal of Applied Physics, 108 (2010) 043517. [103] Y. Cao, X. Zhao, T. Zhu, et al., Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure, Applied Physics Letters, 92 (2008) 143106. [104] B. Poudel, Q. Hao, Y. Ma, et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science, 320 (2008) 634-638.
|