跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 04:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏宏
研究生(外文):Chen, Po-Hung
論文名稱:類鑽碳混摻碲化鉍銻奈米複合薄膜於熱電轉換之應用
論文名稱(外文):Diamond-like carbon doped Bi-Sb-Te nanocomposite films for thermoelectric applications
指導教授:陳軍華陳軍華引用關係
指導教授(外文):Chen, Chun-Hua
口試委員:呂宗昕張文固黃美嬌陳軍華
口試委員(外文):Lu, Chung-HsinChang, Wen-KuHuang, Mei-JiauChen, Chun-Hua
口試日期:2018-08-09
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:60
中文關鍵詞:熱電材料奈米結構薄膜異質介面碲化銻鉍類鑽碳
外文關鍵詞:thermoelectric materialnanostructured filmheterogeneous interfacebismuth antimony telluriumdiamond-like carbon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來奈米材料之異質複合工程已然成為開發高熱電性能材料最具潛力的策略。異質相摻雜除了可以選擇性彌補母材熱電特性外,其衍生之異質功能性介面,更可突破材料熱電性質之物理耦合關係,進一步有效提升整體熱電優值(Thermoelectric figure of merit, ZT)。碲化鉍銻(Bi0.5Sb1.5Te3)屬於V-VI族p型半導體材料,在室溫下具有極佳之熱電性質,是目前商用化發展最為成熟的熱電材料之一。有鑑於此,本研究利用Bi0.5Sb1.5Te3 (BST)良好之導電性能,選擇具有低導電導熱特性之類鑽碳(Diamond-like carbon; DLC)進行異質混摻,期待透過降低材料導熱率,及產生之各式DLC/BST異質介面引發載子濾能效應,提升整體熱電效能。
本研究利用雙光束脈衝雷射沉積系統,於SiO2/Si絕緣基板上成功製備一系列新穎DLC/BST異質奈米複合薄膜(Hetero-nanocomposite films)。首先透過分光鏡調控主副靶材雷射功率,製備所得之薄膜DLC摻雜比例約在0~19.3 wt%之間。DLC混摻薄膜(4.3 wt% DLC)之Seebeck係數最高達652 µVK-1約3倍於本質BST。從Pisarenko plot分析可知,此增幅情形來自於異質介面引發之載子濾能效應。透過熱擴散度及拉曼光譜分析可證明DLC摻雜確實能有效降低薄膜之熱傳導。為了進一步調控優選方向及介面結構,選用熱電特性最佳化之分光比,基板沉積溫度從400 oC調升至450 oC及500 oC,結果發現優選方向從(015)逐漸轉變至(00Ɩ)。此外,從TEM分析發現高密度、高方向性之雙晶介面貫穿BST片狀結構,推測能在不影響載子傳輸的前提下,達到散射聲子降低熱導率之效果,其中沉積溫度450oC之薄膜(3.8 wt% DLC) Seebeck及功率因子分別為616 µVK-1及37 µWcm-1K-2,普遍優於文獻報導BST之值。
In recent years, heterogeneous nanostructuring has become one of the most promising strategies for modifying thermoelectric materials. The introduction of heterogeneous dopants could not only selectively improve intrinsically-poor specific properties of the base materials, but potentially break the physically coupled thermoelectric properties due to the created various heterogeneous functional interfaces for further enhancing the overall thermoelectric figure of merit (ZT). Bismuth-antimony-tellurium (BST), one of the most mature thermoelectric composites in commercialization, is a p-type V-VI semiconductor material exhibiting a high thermoelectric performance around room temperature. In this work, from the view point of lowering the thermal conductivity, diamond-like carbon (DLC), a representative
branch in the family of less-conductive amorphous carbons was specially introduced as the heterogeneous component to cooperate with BST, and expected to provide various DLC/BST hetero-interfaces for activating the known energy filtering effect for enhancing the thermoelectric properties.
In this dissertation, a series of novel DLC/BST heterogeneous nanocomposite films were successfully deposited on SiO2/Si substrates using dual beam pulse laser deposition system. Beam splitters were applied to regulate laser energy for individually ablating BST and pyrolytic carbon targets for fabricating the DLC/BST films with different DLC contents (0~19.3 wt%). The highest Seebeck coefficient of the DLC/BST film (4.3 wt% DLC) was found to approach 652 µVK-1 which is over three times higher than that for intrinsic BST. According to Pisarenko plot, the significantly enhanced Seebeck coefficient evidently originated from the DLC/BST hetero-interfaces induced energy filtering effect. Besides, the greatly suppressed thermal transport as evidenced by micro-Raman and thermal diffusivity characterizations reasonably came from the effects of grain fining of BST and the intrinsically low thermal conductivity of DLC. To further adjust preferential orientation and interfacial structure, the laser energy ratio for providing the highest Seebeck coefficient was maintained for film preparation with a higher deposition temperature of 450 oC and 500 oC. It was found that preferential orientation gradually shifted from (015) to (00Ɩ) with temperature increasing. In addition, the TEM images attested high-density and strongly oriented twin bands almost across the whole BST flake-like structure, indicated the potential for scattering multi-wavelength phonons and further decreasing the thermal conductivity, without greatly interfering the carrier transportation. An enhanced Seebeck coefficient of 616 μVK-1 and the corresponding power factor of 37 µWcm-1K-2 obtained from the DLC/BST film prepared at 450 oC (3.8 wt% DLC) are comparable to or higher than previous reported values of BST or BiSbTe-based nanocomposites.
摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 前言 1
第二章 文獻回顧 3
2.1 熱電材料的原理與簡介 3
2.1.1 熱電效應 4
2.1.2 熱電優值(ZT) 7
2.1.3 熱電材料類型簡介 8
2.2 奈米化熱電材料簡介 10
2.2.1 奈米化對熱電性質之影響 10
2.2.2 異質奈米複合結構熱電材料 13
2.3 Bi0.5Sb1.5Te3的背景與簡介 15
2.4 碳混摻之熱電材料研究現況 19
2.4.1石墨烯(Graphene) 19
2.4.2奈米碳管(Carbon nanotube; CNT) 20
2.4.3 C60 (Fullerene) 21
2.5 研究動機 22
第三章 研究方法與步驟 24
3.1 鍍膜前置作業 25
3.1.1 靶材製備 25
3.1.2 試片預備與清洗 25
3.2 雙脈衝雷射沉積 25
3.2.1 靶材裝置及雷射設定 25
3.2.2 DLC/BST薄膜沉積 27
3.3 微結構分析 27
3.3.1 掃描式電子顯微鏡 28
3.3.2 X光繞射分析儀 28
3.3.3 X光光電子能譜儀 28
3.3.4 聚焦離子束顯微鏡 28
3.3.5 穿透式電子顯微鏡 28
3.3.6 拉曼光譜儀 29
3.4 熱電性質量測 29
3.4.1 霍爾量測系統 29
3.4.2 Seebeck量測系統 30
3.4.3 熱擴散量測系統 31
第四章 結果與討論 33
4.1 雙靶共沉積混摻結構:DLC摻雜比例 33
4.1.1 成分及形貌分析 33
4.1.2 熱電性質分析 40
4.1.3 熱傳導分析 43
4.2 雙靶共沉積混摻結構:沉積溫度 45
4.2.1 成分及形貌分析 45
4.2.2 熱電性質分析 50
第五章 結論 52
參考文獻 53
[1] L. E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321 (2008) 1457-1461.
[2] J. P. Heremans, V. Jovovic, E. S. Toberer, et al., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science, 321 (2008) 554-557.
[3] D. M. Rowe., Thermoelectrics handbook: macro to nano: CRC press., 1st ed., Boca Raton, CRC Press, 2005
[4] K. Uchida, S. Takahashi, K. Harii, et al., Observation of the spin Seebeck effect, Nature, 455 (2008) 778.
[5] Y. G. Gurevich, JE. Velazquez-Perez, Peltier Effect in Semiconductors, Wiley Encyclopedia of Electrical and Electronics Engineering, (1999) 1-21.
[6] T. M. Tritt, Thermoelectric phenomena, materials, and applications, Annual review of materials research, 41 (2011) 433-448.
[7] J. R. Szczech, J. M. Higgins, S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials, Journal of Materials Chemistry, 21 (2011) 4037-4055.
[8] M. Hamid Elsheikh, D. A. Shnawah, M. F. M. Sabri, et al., A review on thermoelectric renewable energy: Principle parameters that affect their performance, Renewable and Sustainable Energy Reviews, 30 (2014) 337-355.
[9] D. Kraemer, J. Sui, K. McEnaney, et al., High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts, Energy & Environmental Science, 8 (2015) 1299-1308.
[10] D. K. Aswal, R. Basu, A. Singh, Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects, Energy Conversion and Management, 114 (2016) 50-67.
[11] J. He, T. M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward, Science, 357 (2017) 6358-9997
[12] K. F. Hsu, S. Loo, F. Guo, et al., Cubic AgPbmSbTe2+ m: bulk thermoelectric materials with high figure of merit, Science, 303 (2004) 818-821.
[13] G. A. Slack, M. A. Hussain, The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators, Journal of applied physics, 70 (1991) 2694-2718.
[14] D. M. S., C. G., T. M. Y., et al., New directions for low-dimensional thermoelectric materials, Advanced Materials, 19 (2007) 1043-1053.
[15] V. C. J., S. Ali, M. Arun, et al., Nanostructured thermoelectrics: big efficiency gains from small features, Advanced Materials, 22 (2010) 3970-3980.
[16] X. L. Wu, J. Y. Fan, T. Qiu, et al., Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites, Physical Review Letters, 94 (2005) 026102.
[17] P. Pichanusakorn, P. Bandaru, Nanostructured thermoelectrics, Materials Science and Engineering: R: Reports, 67 (2010) 19-63.
[18] K. Kishimoto, M. Tsukamoto, T. Koyanagi, Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering, Journal of applied physics, 92 (2002) 5331-5339.
[19] Z. Qihao, A. Xin, W. Lianjun, et al., Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure, Advanced Functional Materials, 25 (2015) 966-976.
[20] Y. Zhang, G. D. Stucky, Heterostructured approaches to efficient thermoelectric materials, Chemistry of Materials, 26 (2014) 837-848.
[21] S. V. Faleev, F. Léonard, Theory of enhancement of thermoelectric properties of materials with nanoinclusions, Physical Review B, 77 (2008) 214304.
[22] A. Popescu, L. M. Woods, J. Martin, et al., Model of transport properties of thermoelectric nanocomposite materials, Physical Review B, 79 (2009) 205302.
[23] J. Zhou, X. Li, G. Chen, et al., Semiclassical model for thermoelectric transport in nanocomposites, Physical Review B, 82 (2010) 115308.
[24] Y. Zhang, M. L. Snedaker, C. S. Birkel, et al., Silver-based intermetallic heterostructures in Sb2Te3 thick films with enhanced thermoelectric power factors, Nano Letters, 12 (2012) 1075-1080.
[25] D.-K. Ko, Y. Kang, C. B. Murray, Enhanced thermopower via carrier energy filtering in solution-processable Pt–Sb2Te3 nanocomposites, Nano Letters, 11 (2011) 2841-2844.
[26] M. He, J. Ge, Z. Lin, et al., Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface, Energy & Environmental Science, 5 (2012) 8351-8358.
[27] L.-D. Zhao, V. P. Dravid, M. G. Kanatzidis, The panoscopic approach to high performance thermoelectrics, Energy & Environmental Science, 7 (2014) 251-268.
[28] Z. Yichi, B. Je-Hyeong, L. Joun, et al., Hot carrier filtering in solution processed heterostructures: A paradigm for improving thermoelectric efficiency, Advanced Materials, 26 (2014) 2755-2761.
[29] W. T. Mozet., Investigation of fundamental growth mechanisms in pulsed laser deposition synthesis of nanostructured materials, ProQuest Dissertations And Theses, 2016
[30] D. M. Rowe., Thermoelectrics handbook: macro to nano: CRC press., 1st ed., Boca Raton, CRC Press, 2005
[31] J. Ko, J.-Y. Kim, S.-M. Choi, et al., Nanograined thermoelectric Bi2Te2.7Se0.3 with ultralow phonon transport prepared from chemically exfoliated nanoplatelets, Journal of Materials Chemistry A, 1 (2013) 12791-12796.
[32] W. Xie, J. He, H. J. Kang, et al., Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 Nanocomposites, Nano Letters, 10 (2010) 3283-3289.
[33] K. Sang Il, A. Kyunghan, Y. Dong-Hee, et al., Enhancement of seebeck coefficient in Bi0.5Sb1.5Te3 with high-density Tellurium nanoinclusions, Applied Physics Express, 4 (2011) 091801.
[34] S. Hwang, S.-I. Kim, K. Ahn, et al., Enhancing the thermoelectric properties of p-type bulk Bi-Sb-Te Nanocomposites via solution-based metal nanoparticle decoration, Journal of Electronic Materials, 42 (2013) 1411-1416.
[35] S. Sumithra, N. J. Takas, W. M. Nolting, et al., Effect of NiTe nanoinclusions on thermoelectric properties of Bi2Te3, Journal of Electronic Materials, 41 (2012) 1401-1407.
[36] T. Zhang, J. Jiang, Y. Xiao, et al., In situ precipitation of Te nanoparticles in p-type BiSbTe and the effect on thermoelectric performance, ACS Applied Materials & Interfaces, 5 (2013) 3071-3074.
[37] S. Li, T. Fan, X. Liu, et al., Graphene quantum dots embedded in Bi2Te3 nanosheets to enhance thermoelectric performance, ACS Applied Materials & Interfaces, 9 (2017) 3677-3685.
[38] S. Sumithra, N. J. Takas, D. K. Misra, et al., Enhancement in thermoelectric figure of merit in nanostructured Bi2Te3 with semimetal nanoinclusions, Advanced Energy Materials, 1 (2011) 1141-1147.
[39] Y. C. Dou, X. Y. Qin, D. Li, et al., Enhanced thermoelectric performance of BiSbTe-based composites incorporated with amorphous Si3N4 nanoparticles, RSC Advances, 5 (2015) 34251-34256.
[40] Y. C. Dou, X. Y. Qin, D. Li, et al., Enhanced thermopower and thermoelectric performance through energy filtering of carriers in (Bi2Te3)0.2(Sb2Te3)0.8 bulk alloy embedded with amorphous SiO2 nanoparticles, Journal of Applied Physics, 114 (2013) 044906.
[41] B. Madavali, H. Kim, K. Lee, et al., Enhanced thermoelectric figure-of-merit in Bi-Sb-Te nanocomposites with homogenously dispersed oxide ceramic ZrO2 nanoparticles, Journal of Applied Physics, 121 (2017) 225104.
[42] E. B. Kim, P. Dharmaiah, D. Shin, et al., Enhanced thermoelectric performance through carrier scattering at spherical nanoparticles in Bi0.5Sb1.5Te3/Ta2O5 composites, Journal of Alloys and Compounds, 703 (2017) 614-623.
[43] H.-C. Chang, C.-H. Chen, Y.-K. Kuo, Great enhancements in the thermoelectric power factor of BiSbTe nanostructured films with well-ordered interfaces, Nanoscale, 5 (2013) 7017-7025.
[44] W. Zhu, Y. Deng, Y. Wang, et al., Preferential growth transformation of Bi0.5Sb1.5Te3 films induced by facile post-annealing process: Enhanced thermoelectric performance with layered structure, Thin Solid Films, 556 (2014) 270-276.
[45] Z. Sun, S. Liufu, X. Chen, et al., Enhanced thermoelectric properties of Bi0.5Sb1.5Te3 films by chemical vapor transport process, ACS Applied Materials & Interfaces, 3 (2011) 1390-1393.
[46] M. Takashiri, S. Tanaka, K. Miyazaki, Improved thermoelectric performance of highly-oriented nanocrystalline bismuth antimony telluride thin films, Thin Solid Films, 519 (2010) 619-624.
[47] Z. Yun, Z. Qiang, S. Xianli, et al., Mechanically robust BiSbTe alloys with superior thermoelectric performance: A case study of stable hierarchical nanostructured thermoelectric materials, Advanced Energy Materials, 5 (2015) 1401391.
[48] W. Xie, J. He, H. J. Kang, et al., Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites, Nano Letters, 10 (2010) 3283-3289.
[49] S. Fan, J. Zhao, J. Guo, et al., P-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit, Applied Physics Letters, 96 (2010) 182104.
[50] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
[51] S. Park, J. An, I. Jung, et al., Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents, Nano Letters, 9 (2009) 1593-1597.
[52] M. D. Stoller, S. Park, Y. Zhu, et al., Graphene-based ultracapacitors, Nano Letters, 8 (2008) 3498-3502.
[53] C. Lee, X. Wei, J. W. Kysar, et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (2008) 385-388.
[54] A. A. Balandin, S. Ghosh, W. Bao, et al., Superior thermal conductivity of single-layer graphene, Nano Letters, 8 (2008) 902-907.
[55] X. Ni, G. Liang, J.-S. Wang, et al., Disorder enhances thermoelectric figure of merit in armchair graphene nanoribbons, Applied Physics Letters, 95 (2009) 192114.
[56] J. Y. Kim, J.-H. Lee, J. C. Grossman, Thermal transport in functionalized graphene, ACS Nano, 6 (2012) 9050-9057.
[57] H. Sevinçli, C. Sevik, T. Çağın, et al., A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons, Scientific Reports, 3 (2013) 1228.
[58] J. Dong, W. Liu, H. Li, et al., In situ synthesis and thermoelectric properties of PbTe–graphene nanocomposites by utilizing a facile and novel wet chemical method, Journal of Materials Chemistry A, 1 (2013) 12503-12511.
[59] B. Feng, J. Xie, G. Cao, et al., Enhanced thermoelectric properties of p-type CoSb3/graphene nanocomposite, Journal of Materials Chemistry A, 1 (2013) 13111-13119.
[60] H. Ju, J. Kim, The effect of temperature on thermoelectric properties of n-type Bi2Te3 nanowire/graphene layer-by-layer hybrid composites, Dalton Transactions, 44 (2015) 11755-11762.
[61] C. Li, X. Qin, Y. Li, et al., Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric nanocomposite, Journal of Alloys and Compounds, 661 (2016) 389-395.
[62] D. Suh, S. Lee, H. Mun, et al., Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport, Nano Energy, 13 (2015) 67-76.
[63] N. Xiao, X. Dong, L. Song, et al., Enhanced thermopower of graphene films with oxygen plasma treatment, ACS Nano, 5 (2011) 2749-2755.
[64] D. Sim, D. Liu, X. Dong, et al., Power factor enhancement for few-layered graphene films by molecular attachments, The Journal of Physical Chemistry C, 115 (2011) 1780-1785.
[65] Y. Lu, Y. Song, F. Wang, Thermoelectric properties of graphene nanosheets-modified polyaniline hybrid nanocomposites by an in situ chemical polymerization, Materials Chemistry and Physics, 138 (2013) 238-244.
[66] L. Wang, F. Liu, C. Jin, et al., Preparation of polypyrrole/graphene nanosheets composites with enhanced thermoelectric properties, RSC Advances, 4 (2014) 46187-46193.
[67] K. Xu, G. Chen, D. Qiu, Convenient construction of poly (3,4-ethylenedioxythiophene)–graphene pie-like structure with enhanced thermoelectric performance, Journal of Materials Chemistry A, 1 (2013) 12395-12399.
[68] L. Wang, Q. Yao, H. Bi, et al., PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering, Journal of Materials Chemistry A, 3 (2015) 7086-7092.
[69] K. T. Kim, S. Y. Choi, E. H. Shin, et al., The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite, Carbon, 52 (2013) 541-549.
[70] Q. Lognoné, F. Gascoin, On the effect of carbon nanotubes on the thermoelectric properties of n-Bi2Te2.4Se0.6 made by mechanical alloying, Journal of Alloys and Compounds, 635 (2015) 107-111.
[71] D.-H. Park, M.-Y. Kim, T.-S. Oh, Thermoelectric energy-conversion characteristics of n-type Bi2(Te,Se)3 nanocomposites processed with carbon nanotube dispersion, Current Applied Physics, 11 (2011) S41-S45.
[72] H. Bark, J.-S. Kim, H. Kim, et al., Effect of multiwalled carbon nanotubes on the thermoelectric properties of a bismuth telluride matrix, Current Applied Physics, 13 (2013) S111-S114.
[73] K. Ahmad, C. Wan, M. A. Al-Eshaikh, Effect of uniform dispersion of single-wall carbon nanotubes on the thermoelectric properties of BiSbTe-based nanocomposites, Journal of Electronic Materials, 46 (2017) 1348-1357.
[74] N. Farahi, S. Prabhudev, M. Bugnet, et al., Enhanced figure of merit in Mg2Si0.877Ge0.1Bi0.023/multi wall carbon nanotube nanocomposites, RSC Advances, 5 (2015) 65328-65336.
[75] D. N. Truong, H. Kleinke, F. Gascoin, Thermoelectric properties of higher manganese silicide/multi-walled carbon nanotube composites, Dalton Transactions, 43 (2014) 15092-15097.
[76] Y. Yeo, T. Oh, Thermoelectric properties of p-type (Bi,Sb)2Te3 nanocomposites dispersed with multiwall carbon nanotubes, Materials Research Bulletin, 58 (2014) 54-58.
[77] N. Gothard, J. Spowart, T. Tritt, Thermal conductivity reduction in fullerene‐enriched p‐type bismuth telluride composites, Physica Status Solidi (a), 207 (2010) 157-162.
[78] N. Gothard, T. Tritt, J. Spowart, Figure of merit enhancement in bismuth telluride alloys via fullerene-assisted microstructural refinement, Journal of Applied Physics, 110 (2011) 023706.
[79] V. Kulbachinskii, V. Kytin, M. Y. Popov, et al., Composites of Bi2–xSbxTe3 nanocrystals and fullerene molecules for thermoelectricity, Journal of Solid State Chemistry, 193 (2012) 64-70.
[80] X. Shi, L. Chen, J. Yang, et al., Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering, Applied Physics Letters, 84 (2004) 2301-2303.
[81] X. Shi, L. Chen, S. Bai, et al., Influence of fullerene dispersion on high temperature thermoelectric properties of BayCo4Sb12-based composites, Journal of Applied Physics, 102 (2007) 103709.
[82] D. Xie, J. Xu, G. Liu, et al., Synergistic optimization of thermoelectric performance in p-type Bi0.48Sb1.52Te3/graphene composite, Energies, 9 (2016) 236.
[83] C. Li, X. Qin, Y. Li, et al., Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric nanocomposite, Journal of Alloys and Compounds, 661 (2016) 389-395.
[84] M. Y. Kim, Y. H. Yeo, D. H. Park, et al., Thermoelectric characteristics of the (Bi,Sb)2(Te,Se)3 nanocomposites processed with nanoparticle dispersion, Ceramics International, 38 (2012) S529-S533.
[85] V. Blank, S. Buga, V. Kulbachinskii, et al., Thermoelectric properties of Bi0.5Sb1.5Te3/C60 nanocomposites, Physical Review B, 86 (2012) 075426.
[86] J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering: R: Reports, 37 (2002) 129-281.
[87] A. C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 362 (2004) 2477-2512.
[88] T.-H. Chen, P.-H. Chen, C.-H. Chen, Laser co-ablation of bismuth antimony telluride and diamond-like carbon nanocomposites for enhanced thermoelectric performance, Journal of Materials Chemistry A, 6 (2018) 982-990.
[89] H.-C. Chang, C.-H. Chen, Y.-K. Kuo, Great enhancements in the thermoelectric power factor of BiSbTe nanostructured films with well-ordered interfaces, Nanoscale, 5 (2013) 7017-7025.
[90] T.-H. Chen, P.-Y. Lin, H.-C. Chang, et al., Enhanced thermoelectricity of three-dimensionally mesostructured BixSb2− xTe3 nanoassemblies: from micro-scaled open gaps to isolated sealed mesopores, Nanoscale, 9 (2017) 3283-3292.
[91] W. Richter, C. Becker, A Raman and far‐infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2 (Te1− xSex)3 (0< x< 1),(Bi1− ySby)2Te3 (0< y< 1), Physica Status Solidi (b), 84 (1977) 619-628.
[92] S.-H. Hong, J. Winter, Micro-Raman spectroscopy on a-C: H nanoparticles, Journal of applied physics, 98 (2005) 124304.
[93] D. Teweldebrhan, V. Goyal, A. A. Balandin, Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals, Nano Letters, 10 (2010) 1209-1218.
[94] W. Yim, F. Rosi, Compound tellurides and their alloys for peltier cooling—A review, Solid-State Electronics, 15 (1972) 1121-1140.
[95] Y. Li, D. Li, X. Qin, et al., Enhanced thermoelectric performance through carrier scattering at heterojunction potentials in BiSbTe based composites with Cu3SbSe4 nanoinclusions, Journal of Materials Chemistry C, 3 (2015) 7045-7052.
[96] S. Li, C. Xin, X. Liu, et al., 2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance, Nano Energy, 30 (2016) 780-789.
[97] J. Zhang, X. Qin, D. Li, et al., Enhanced thermoelectric performance of CuGaTe2 based composites incorporated with graphite nanosheets, Applied Physics Letters, 108 (2016) 073902.
[98] Y. Tang, Z. M. Gibbs, L. A. Agapito, et al., Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites, Nature materials, 14 (2015) 1223.
[99] T. Zou, X. Qin, Y. Zhang, et al., Enhanced thermoelectric performance of β-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering, Scientific reports, 5 (2015) 17803.
[100] J. Floess, S. Oleksy, K. Lee, Low temperature oxidation reaction of microporous carbons, Prepr. Pap., Am. Chem. Soc., Div. Fuel Chem., 34 (1989)
[101] T. Karabacak, J. P. Singh, Y. P. Zhao, et al., Scaling during shadowing growth of isolated nanocolumns, Physical Review B, 68 (2003) 125408.
[102] D. Medlin, Q. Ramasse, C. Spataru, et al., Structure of the (0001) basal twin boundary in Bi2Te3, Journal of Applied Physics, 108 (2010) 043517.
[103] Y. Cao, X. Zhao, T. Zhu, et al., Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure, Applied Physics Letters, 92 (2008) 143106.
[104] B. Poudel, Q. Hao, Y. Ma, et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science, 320 (2008) 634-638.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊