(3.236.228.250) 您好!臺灣時間:2021/04/22 04:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王煥中
研究生(外文):Wang, Huan-Chung
論文名稱:高功率及微波功率應用之氮化鎵半導體元件製作與特性研究
論文名稱(外文):Fabrication and Characterization of GaN-based Semiconductor Devices for High-Power and Microwave Power Applications
指導教授:張翼張翼引用關係
指導教授(外文):Chang, Edward-Yi
口試委員:張立成維華許恆通孫台平李清庭張翼
口試委員(外文):Chang, LiChieng, Wei-HuaHsu, Heng-TungSun, Tai-PingLee, Ching-TingChang, Edward-Yi
口試日期:2018-08-24
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:86
中文關鍵詞:氮化鎵高電子遷移率電晶體閘極絕緣層電漿輔助原子沉積系統低壓化學氣相沉積系統功率元件
外文關鍵詞:GaNHEMTgate insulatorPEALDLPCVDPower Device
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮化鎵系列金屬-絕緣層-半導體高電子遷移率電晶體對於下一代高效率和高壓功率元件之應用具有極大的吸引力。由於介電層材料在此金屬-絕緣層-半導體電晶體中同時作為元件表面保護層以及堆疊在閘極金屬底下,因此扮演重要角色。首先,我們提出一個簡單且有效的成長高品質介電層氧化鋁薄膜方式,就是利用水及遠離式氧氣電漿作為電漿增強型原子層沉積系統成長氧化鋁的氧元素來源,以形成高品質薄膜,進而改善氮化鋁鎵/氮化鎵金屬-絕緣層-半導體高電子遷移率電晶體元件特性。接著,我們研究利用低壓化學氣相沉積系統在780度高溫下成長高品質之氮化矽作為四元化合物氮化銦鋁鎵/氮化鎵金屬-絕緣層-半導體高電子遷移率電晶體之閘極介電層及元件表面保護層,其氮化鎵元件具有非常高的輸出電流密度、大的閘極電壓擺幅、低漏電流、高崩潰電壓以及較低之特徵導通電阻值等特性,換算品質因素指標可高達737 MW/cm^2。此外,氮化鎵系列高電子遷移率電晶體對於微波功率元件應用極具有潛力因其本身材料具有許多優越特性。最後,我們探討兩種不同尺寸大小之氮化鎵高電子遷移率電晶體磊晶成長於四吋碳化矽基板上在S頻段操作下其輸出功率密度之表現。
Gallium nitride-based metal–insulator–semiconductor high electron mobility transistors (GaN MIS-HEMTs) are highly attractive for next-generation high-efficiency and high-voltage power applications. For the MIS-HEMT, dielectric materials play an important role in GaN-based heterojunction lateral devices as they are essential in surface passivation and gate stack. First, we improved the electrical performances of AlGaN/GaN MIS-HEMTs with high quality Al2O3 gate dielectric deposited by plasma enhanced atomic layer deposition (PEALD) using both H2O and remote O2 plasma as oxygen sources, indicating that incorporating remote O2 plasma in the ALD-Al2O3 deposition process is an effective and simple way to provide high quality gate dielectric. Then, we demonstrate the quaternary InAlGaN/GaN MIS-HEMTs with high quality SiNx gate dielectric and surface passivation layer deposited by low pressure chemical vapor deposition (LPCVD) at 780°C. The LPCVD-SiNx/InAlGaN/GaN MIS-HEMT device exhibited very high output current density, large gate voltage swing, low leakage current, high breakdown voltage, and low specific ON-resistance (RON,sp), yielding a high figure of merit (FOM) of 737 MW/cm^2. Furthermore, GaN-based HEMTs also have great potential in high power microwave applications owing to the superior material properties. We demonstrate the output power density at S-band for two different sizes of 0.2 mm and 1.2 mm AlGaN/GaN HEMTs on 4-inch SiC substrate.
Abstract (in Chinese)…………………………………………………I
Abstract (in English)…………………………………………………II
Acknowledgement (in Chinese)………………………………………III
Contents…………………………………………………………………IV
Table Captions…………………………………………………………VI
Figure Captions………………………………………………………VII
Chapter 1 Introduction…………………………………………………1
1.1 General background…………………………………………………1
1.2 GaN material and basics of AlGaN/GaN HEMTs…………………2
1.3 Issues of GaN-based HEMTs……………………………………… 4
1.4 Motivation and organization of dissertation……………… 6
Chapter 2 AlGaN/GaN MIS-HEMTs with High Quality ALD-Al2O3 Gate Dielectric Using Water and Remote Oxygen Plasma as Oxidants……………15
2.1 Introduction……………………………………………………………15
2.2 Experimental……………………………………………………………17
2.3 Results and Discussion………………………………………………18
2.4 Summary………………………………………………………………… 21
Chapter 3 High-Performance LPCVD-SiNx/InAlGaN/GaN MIS-HEMTs with 737 MW/cm2 Figure of Merit for Power Device Applications…………29
3.1 Introduction……………………………………………………………29
3.2 Experimental……………………………………………………………31
3.3 Results and Discussion………………………………………………33
3.4 Summary………………………………………………………………… 38
Chapter 4 AlGaN/GaN HEMTs for S-Band Power Applications………48
4.1 Introduction…………………………………………………………48
4.2 Experimental…………………………………………………………49
4.3 Results and Discussion……………………………………………53
4.4 Summary……………………………………………………………… 56
Chapter 5 Conclusions………………………………………………… 67
References…………………………………………………………………69
Curriculum Vitae (in English)……………………………………… 83
Publication List…………………………………………………………85
[1] M. Meneghini, G. Meneghesso, and E. Zanoni, Power GaN Devices: materials, applications and reliability. Springer, 2016.
[2] N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, “GaN power transistors on Si substrates for switching applications,” Proceedings of the IEEE, vol. 98, no. 7, pp. 1151–1161, 2010.
[3] R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard, and W. L. Pribble, “A review of GaN on SiC high electron-mobility power transistors and MMICs,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1764–1783, Jun. 2012,
[4] B. J. Baliga, “Power semiconductor device figure of merit for high-frequency applications,” IEEE Electron Device Lett., vol. 10, no. 10, pp. 455–457, 1989.
[5] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222–3233, 1999.
[6] E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, and G. J. Sullivan, “Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures,” J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., vol. 17, no. 4, pp. 1742–1749, 1999.
[7] H. Morkoc, R. Cingolani, and B. Gil, “Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors,” Solid-State Electronics, vol. 43, no. 10, pp. 1909–1927, 1999.
[8] J.P. Ibbetson, Fini, P.T. Fini, Ness, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “ Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors ,” Applied Physics Lett., vol. 77, no. 2, pp. 250–252, 2000.
[9] R. Gaska, J. W. Yang, A. Osinsky, A. D. Bykhovski, and M. S. Shur, “ Piezoeffect and gate current in AlGaN/GaN high electron mobility transistors,” Applied Physics Lett., vol. 71, no. 25, pp. 3673–3675, 1997.
[10] C. H. Chen, S. M. Baier, D. K. Arch, and M. S. Shur, “A new and simple model for GaAs heterojunction FET gate characteristic,” IEEE Trans. Electron Devices, vol. 35, no. 5, pp. 570–576, May 1988.
[11] S. A. Kukushkin, A. V. Osipov, V. N. Bessolov, B. K. Medvedev, V. K. Nevolin, and K. A. Tcarik, “Substrates for epitaxy of gallium nitride: new materials and techniques,” Rev. Adv. Mater. Sci., vol. 17, pp. 1–32, 2008.
[12] J. J. Xu, Y.-F. Wu, S. Keller, G. Parish, S. Heikman, B. J. Thibeault, U. K. Mishra, and R. A. York, “1-8-GHz GaN-based power amplifier using flip-chip bonding,” IEEE Microwave Guided Wave Lett., vol. 9, pp. 277–279, 1999.
[13] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, "GaN: Processing, defects, and devices," J. Appl. Phys., vol. 86, no. 1, pp. 1–78, 1999.
[14] S. Hasegawa and F. Grey, "Electronic transport at semiconductor surfaces—from point-contact transistor to micro-four-point probes," Surf. Sci., vol. 500, no. 1-3, pp. 84–104, 2002.
[15] M. A. Khan, M. S. Shur, Q. C. Chen, and J. N. Kuznia, “Current-voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias,” Electron. Lett., vol. 30, no. 25, pp. 2175–2176, Dec. 1994.
[16] O. Mitrofanov and M. Manfra, "Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors," Superlattices Microstruct., vol. 34, no. 1/2, pp. 33–53, Aug. 2003.
[17] S. C. Binari, P. B. Klein, and T. E. Kazior, "Trapping Effects in GaN and SiC Microwave FETs," Proceedings of the IEEE, vol. 90, no. 6, pp. 1048–1059, June 2002.
[18] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, "Trapping effects and microwave power performance in AlGaN/GaN HEMTs," IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 465–471, Mar. 2001.
[19] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, vol. 48, pp. 560–566, 2001.
[20] M. Morardi and P. Valizadeh, “Analytical modeling of current collapse in AlGaNGaN HFETs according to the virtual gate concept,” IEEE Trans. Device Mater. Reliab., vol.10, no.2, Jun. 2010.
[21] H. Kim, J. Lee, D. Liu, and W. Lu, “Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing, Appl. Phys. Lett., vol. 86, no. 14, p. 143505, Mar. 2005.
[22] C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, “Capacitance–voltage characteristics of Al2O3/AlGaN/GaN structures and state density distribution at Al2O3/AlGaN interface,” Jpn. J. Appl. Phys., vol. 50, no. 2R, pp. 021001-1–021001-7, Feb. 2011.
[23] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, “GaN metal–oxide–semiconductor high-electron-mobility transistor with atomic layer deposited Al2O3 as gate dielectric,” Appl. Phys. Lett., vol. 86, no. 6, pp. 063501-1–063501-3, Feb. 2005.
[24] J. Shi and L. F. Eastman, “Correlation between AlGaN/GaN MISHFET performance and HfO2 insulation layer quality,” IEEE Electron Device Lett., vol. 32, no. 3, pp. 312–314, Mar. 2011.
[25] S.-C. Liu, B.-Y. Chen, Y.-C. Lin, T.-E. Hsieh, H.-C. Wang, and E. Y. Chang, “GaN MIS-HEMTs with nitrogen passivation for power device applications,” IEEE Electron Device Lett., vol. 35, no. 10, pp. 1001–1003, Oct. 2014.
[26] T.-E. Hsieh, Y.-C. Lin, J.-T. Liao, W.-C. Lan, P.-C. Chin and E. Y. Chang, “Effect of high voltage stress on the DC performance of the Al2O3/AlN GaN metal–insulator–semiconductor high-electron mobility transistor for power applications,” Appl. Phys. Exp., vol. 8, no. 10, pp. 104102-1–104102-4, Sep. 2015.
[27] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243–5275, May 2001.
[28] B. Shin, J. R. Weber, R. D. Long, P. K. Hurley, C. G. Van de Walle, and P. C. McIntyre, “Origin and passivation of fixed charge in atomic layer deposited aluminum oxide gate insulators on chemically treated InGaAs substrates,” Appl. Phys. Lett., vol. 96, no. 15, p. 152908, Apr. 2010.
[29] S. Huang, Q. Jiang, K. Wei, G. Liu, J. Zhang, X. Wang, Y. Zheng, B. Sun, C. Zhao, H. Liu, Z. Jin, X. Liu, H. Wang, S. Liu, Y. Lu, C. Liu, S. Yang, Z. Tang, J. Zhang, Y. Hao, and K. J. Chen, “High-temperature low-damage gate recess technique and ozone-assisted ALD-grown Al2O3 gate dielectric for high-performance normally-off GaN MIS-HEMTs,” in Proc. IEEE Int. Electron Devices Meeting, pp. 17.4.1–17.4.4, Dec. 2014.
[30] H. Tokuda, J. T. Asubar, and M. Kuzuhara, “AlGaN/GaN metal–insulator–semiconductor high-electron mobility transistors with high on/off current ratio of over 5 × 1010 achieved by ozone pretreatment and using ozone oxidant for Al2O3 gate insulator,” Jpn. J. Appl. Phys., vol. 55, no. 12, p. 120305, Nov. 2016.
[31] T. Kubo, J. J. Freedsman, Y. Iwata, and T. Egawa, “Electrical properties of GaN-based metal–insulator–semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors,” Semicond. Sci. Technol., vol. 29, no. 4, p. 045004, Feb. 2014.
[32] T. Kubo, J. J. Freedsman, Y. Yoshida, and T. Egawa, “Effects of process temperature during atomic layer deposition using water and ozone as oxidants on current–voltage characteristics of Al2O3/AlGaN/GaN high-electron-mobility transistors on Si substrates,” Jpn. J. Appl. Phys., vol. 54, no. 2, p. 020301, Jan. 2015.
[33] A. Malmros, P. Gamarra, M.-A. Di Forte-Poisson, H. Hjelmgren, C. Lacam, M. Thorsell, M. Tordjman, R. Aubry, and N. Rorsman, “Evaluation of thermal versus plasma-assisted ALD Al2O3 as passivation for InAlN/AlN/GaN HEMTs,” IEEE Electron Device Lett., vol. 36, no. 3, pp. 235–237, Mar. 2015.
[34] X. Qin and R. M. Wallace, “In situ plasma enhanced atomic layer deposition half cycle study of Al2O3 on AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., vol. 107, no. 8, pp. 081608-1–081608-4, Aug. 2015.
[35] T.-E. Hsieh, E. Y. Chang, Y.-Z. Song, Y.-C. Lin, H.-C. Wang, S.-C. Liu, S. Salahuddin, and C. C. Hu, “Gate recessed quasi-normally off Al2O3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer,” IEEE Electron Device Lett., vol. 35, no. 7, pp. 732–734, Jul. 2014.
[36] Q. H. Luc, H. B. Do, M. T. H. Ha, C. C. Hu, Y. C. Lin, and E. Y. Chang, “Plasma enhanced atomic layer deposition passivated HfO2/AlN/In0.53Ga0.47As MOSCAPs with sub-nanometer equivalent oxide thickness and low interface trap density,” IEEE Electron Device Lett., vol. 36, no. 12, pp. 1277–1280, Dec. 2015.
[37] Q. H. Luc, S. P. Cheng, P. C. Chang, H. B. Do, J. H. Chen, M. T. H. Ha, S. H. Huynh, C. C. Hu, Y. C. Lin, and E. Y. Chang, “Effects of in-situ plasma-enhanced atomic layer deposition treatment on the performance of HfO2/In0.53Ga0.47As metal–oxide–semiconductor field-effect transistors,” IEEE Electron Device Lett., vol. 37, no. 8, pp. 974–977, Aug. 2016.
[38] S. Yang, Z. Tang, K.-Y. Wong, Y.-S. Lin, C. Liu, Y. Lu, S. Huang, and K. J. Chen, “High-quality interface in Al2O3/GaN/AlGaN/GaN MIS structures with in situ pre-gate plasma nitridation,” IEEE Electron Device Lett., vol. 34, no. 12, pp. 1497–1499, Dec. 2013.
[39] Q. H. Luc, E. Y. Chang, H. D. Trinh, Y. C. Lin, H. Q. Nguyen, Y. Y. Wong, H. B. Do, S. Salahuddin, and C. C. Hu, “Electrical characteristics of n, p-In0.53Ga0.47As MOSCAPs with in situ PEALD-AlN interfacial passivation layer,” IEEE Trans. Electron Devices, vol. 61, no. 8, pp. 2774–2778, Aug. 2014.
[40] A. Winzer, N. Szabo´, A. Wachowiak, P. M. Jordan, J. Heitmann, and T. Mikolajick, “Impact of postdeposition annealing upon film properties of atomic layer deposition-grown Al2O3 on GaN,” J. Vac. Sci. Technol. B, vol. 33, no. 1, pp. 01A106-1–01A106-6, 2015.
[41] T.-H. Hung, P. S. Park, S. Krishnamoorthy, D. N. Nath, and S. Rajan, “Interface charge engineering for enhancement-mode GaN MISHEMTs,” IEEE Electron Device Lett., vol. 35, no. 3, pp. 312–314, Mar. 2014.
[42] S. Huang, S. Yang, J. Roberts, and K. J. Chen, “Threshold voltage instability in Al2O3/GaN/AlGaN/GaN metal–insulator–semiconductor high-electron mobility transistors,” Jpn. J. Appl. Phys., vol. 50, no. 11, pp. 110202-1–110202-3, Nov. 2011.
[43] S. Yang, S. Huang, M. Schnee, Q.-T. Zhao, J. Schubert, and K. J. Chen, “Fabrication and characterization of enhancement-mode high-κ LaLuO3-AlGaN/GaN MIS-HEMTs,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3040–3046, Oct. 2013.
[44] S. Liu, S. Yang, Z. Tang, Q. Jiang, C. Liu, M. Wang, B. Shen, and K. J. Chen, “Interface/border trap characterization of Al2O3/AlN/GaN metal-oxide-semiconductor structures with an AlN interfacial layer,” Appl. Phys. Lett., vol. 106, no. 5, pp. 051605-1–051605-4, Feb. 2015.
[45] S. Yang, S. Liu, Y. Lu, and K. J. Chen, “Trapping mechanisms in insulated-gate GaN power devices: Understanding and characterization techniques,” Phys. status solidi A, vol. 214, no. 3, p. 1600607, 2017.
[46] G. H. Jessen, R. C. Fitch, J. K. Gillespie, G. Via, A. Crespo, D. Langley, D. J. Denninghoff, M. Trejo, and E. R. Heller, “Short-channel effect limitations on highfrequency operation of AlGaN/GaN HEMTs for T-gate devices,” IEEE Trans. Electron Devices, vol. 54, no. 10, pp. 2589–2597, Oct. 2007.
[47] S. Einfeldt, V. Kirchner, H. Heinke, M. Dießelberg, S. Figge, K. Vogeler, and D. Hommel, “Strain relaxation in AlGaN under tensile plane stress,” J. Appl. Phys., vol. 88, no. 12, pp. 7029–7036, Dec. 2000
[48] T. Lim, R. Aidam, L. Kirste, P. Waltereit, R. Quay, S. Müller, and O. Ambacher, “Compositional variation of nearly lattice-matched InAlGaN alloys for high electron mobility transistors,” Appl. Phys. Lett., vol. 96, no. 25, p. 252108, 2010.
[49] G. Naresh-Kumar, A. Vilalta-Clemente, S. Pandey, D. Skuridina, H. Behmenburg, P. Gamarra, G. Patriarche, I. Vickridge, M. A. di Forte-Poisson, P. Vogt, M. Kneissl, M. Morales, P. Ruterana, A. Cavallini, D. Cavalcoli, C. Giesen, M. Heuken, and C. Trager-Cowan, “Multicharacterization approach for studying InAl(Ga)N/Al(Ga)N/GaN heterostructures for high electron mobility transistors,” AIP Adv., vol. 4, no. 12, pp. 127101-1–127101-13, Dec. 2014.
[50] F. Medjdoub, R. Kabouche, A. Linge, B. Grimbert, M. Zegaoui, P. Gamarra, C. Lacam, M. Tordjman, and M.-A. di Forte-Poisson, “High electron mobility in high-polarization sub-10 nm barrier thickness InAlGaN/GaN heterostructure,” Appl. Phys. Exp., vol. 8, no. 10, p. 101001, 2015.
[51] R. Wang, G. Li, G. Karbasian, J. Guo, B. Song, Y. Yue, Z. Hu, O. Laboutin, Y. Cao, W. Johnson, G. Snider, P. Fay, D. Jena, and H. G. Xing, “Quaternary barrier InAlGaN HEMTs with fT/fmax of 230/300 GHz,” IEEE Electron Device Lett., vol. 34, no. 3, pp. 378–380, Mar. 2013.
[52] K. Makiyama, S. Ozaki, T. Ohki, N. Okamoto, Y. Minoura, Y. Niida, Y. Kamada, K. Joshin, K. Watanabe, and Y. Miyamoto, “Collapse free high power InAlGaN/GaN-HEMT with 3 W/mm at 96 GHz,” in Proc. IEEE IEDM, Washington, DC, USA, pp. 9.1.1–9.1.4, Dec. 2015.
[53] R. Aubry, J. C. Jacquet, M. Oualli, O. Patard, S. Piotrowicz, E. Chartier, N. Michel, L. Trinh Xuan, D. Lancereau, C. Potier, M. Magis, P. Gamarra, C. Lacam, M. Tordjman, O. Jardel, C. Dua, and S. L. Delage, “ICP-CVD SiN passivation for high-power RF InAlGaN/GaN/SiC HEMT,” IEEE Electron Device Lett., vol. 37, no. 5, pp. 629–632, May 2016.
[54] S. Turuvekere, N. Karumuri, A. A. Rahman, A. Bhattacharya, A. DasGupta, and N. DasGupta, “Gate leakage mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison and modeling,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3157–3165, Oct. 2013.
[55] K. Zhang, C. Kong, J. Zhou, Y. Kong, and T. Chen, “High-performance enhancement-mode Al2O3/InAlGaN/GaN MOS high-electron mobility transistors with a self-aligned gate recessing technology,” Appl. Phys. Exp., vol. 10, no. 2, p. 024101, 2017.
[56] F. Lumbantoruan, C.-H. Wu, X.-X. Zheng, S. K. Singh, C.-F. Dee, B. Y. Majlis, and E.-Y. Chang, “Analysis of Leakage Current Mechanism for Ni/Au Schottky Contact on InAlGaN/GaN HEMT,” Phys. status solidi A, vol. 215, no. 7, p. 1700741, Apr. 2018.
[57] S.-C. Liu, B.-Y. Chen, Y.-C. Lin, T.-E. Hsieh, H.-C. Wang, and E. Y. Chang, “GaN MIS-HEMTs with nitrogen passivation for power device applications,” IEEE Electron Device Lett., vol. 35, no. 10, pp. 1001–1003, Oct. 2014.
[58] W. Choi, O. Seok, H. Ryu, H. –Y. Cha, and K.-S. Seo, “High-voltage and low-leakage-current gate recessed normally-off GaN MISHEMTs with dual gate insulator employing PEALD-SiNx/RF sputtered-HfO2,” IEEE Electron Device Letters, vol. 35, no. 2, pp. 175-177, Feb. 2014
[59] H. Jiang, C. Liu, Y. Chen, X. Lu, C. W. Tang, and K. M. Lau, “Investigation of in situ SiN as gate dielectric and surface passivation for GaN MISHEMTs,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 832–839, Jan. 2017.
[60] M. Hua, C. Liu, S. Yang, S. Liu, K. Fu, Z. Dong, Y. Cai, B. Zhang, and K. J. Chen, “GaN-based metal-insulator-semiconductor high-electronmobility transistors using low-pressure chemical vapor deposition SiNx as gate dielectric,” IEEE Electron Device Lett., vol. 36, no. 5, pp. 448–450, May 2015.
[61] X. Wang, S. Huang, Y. Zheng, K. Wei, X. Chen, G. Liu, T. Yuan, W. Luo, L. Pang, H. Jiang, J. Li, C. Zhao, H. Zhang, and X. Liu, “Robust SiNx/AlGaN interface in GaN HEMTs passivated by thick LPCVD-grown SiNx layer,” IEEE Electron Device Lett., vol. 36, no. 7, pp. 666–668, Jul. 2015.
[62] Z. L. Zhang, G. H. Yu, X. D. Zhang, X. G. Deng, S. M. Li, Y. M. Fan, S. C. Sun, L. Song, S. X. Tan, D. D. Wu, W. Y. Li, W. Huang, K. Fu, Y. Cai, Q. Sun, and B. S. Zhang, “Studies on high-voltage GaN-on-Si MIS-HEMTs using LPCVD Si3N4 as gate dielectric and passivation layer,” IEEE Trans. Electron Devices, vol. 63, no. 2, pp. 731–738, Feb. 2016.
[63] Z. Liu, S. Huang, Q. Bao, X. Wang, K. Wei, H. Jiang, H. Cui, J. Li, C. Zhao, X. Liu, J. Zhang, Q. Zhou, W. Chen, B. Zhang, and L. Jia, “Investigation of the interface between LPCVD-SiNx gate dielectric and III-nitride for AlGaN/GaN MIS-HEMTs,” J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., vol. 34, no. 4, p. 041202, 2016.
[64] Z. Zhang, W. Li, K. Fu, G. Yu, X. Zhang, Y. Zhao, S. Sun, L. Song, X. Deng, Z. Xing, L. Yang, R. Ji, C. Zeng, Y. Fan, Z. Dong, Y. Cai, and B. Zhang, “AlGaN/GaN MIS-HEMTs of very-low Vth hysteresis and current collapse with in-situ pre-deposition plasma nitridation and LPCVD-Si3N4 gate insulator,” IEEE Electron Device Lett., vol. 38, no. 2, pp. 236–239, Feb. 2017.
[65] S.-C. Liu, H.-D. Trinh, G.-M. Dai, C.-K. Huang, C.-F. Dee, B. Y. Majlis, D. Biswas, and E. Y. Chang, “Effective surface treatment for GaN metal–insulator–semiconductor high-electron-mobility transistors using HF plus N2 plasma prior to SiN passivation,” Jpn. J. Appl. Phys., vol. 55, no. 1S, p. 01AD06-1–01AD06-5, Nov. 2015.
[66] A. Stoffel, A. Kovács, W. Kronast, and B. Müller, “LPCVD against PECVD for micromechanical applications,” J. Micromech. Microeng., vol. 6, no. 1, p. 1, Mar. 1996.
[67] D. Jin and J. A. D. Alamo, “Methodology for the study of dynamic ON-resistance in high-voltage GaN field-effect transistors,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3190–3196, Oct. 2013.
[68] T.-E. Hsieh, E. Y. Chang, Y.-Z. Song, Y.-C. Lin, H.-C. Wang, S.-C. Liu, S. Salahuddin, and C. C. Hu, “Gate recessed quasi-normally off Al2O3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer,” IEEE Electron Device Lett., vol. 35, no. 7, pp. 732–734, Jul. 2014.
[69] S.-C. Liu, C.-K. Huang, C.-H. Chang, Y.-C. Lin, B.-Y. Chen, S.-P. Tsai, B. Y. Majlis, C.-F. Dee, and E. Y. Chang, "Effective passivation with high-density positive fixed charges for GaN MIS-HEMTs," IEEE J. Electron Devices Soc., vol. 5, no. 3, pp. 170–174, May 2017.
[70] M. Tao, S. Liu, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. Cheng, B. Shen, and M. Wang, "Characterization of 880 V normally off GaN MOSHEMT on silicon substrate fabricated with a plasma-free, self-terminated gate recess process," IEEE Trans. Electron Devices, vol. 65, no. 4, pp. 1453–1457, Apr. 2018.
[71] H.-S. Lee, D. Piedra, M. Sun, X. GaO, S. Guo, and T. Palacios, "3000-V 4.3-mΩ·cm2 InAlN/GaN MOSHEMTs with AlGaN back barrier," IEEE Electron Device Lett., vol. 33, no. 7, pp. 982–984, Jul. 2012.
[72] Q. Zhou, H. Chen, C. Zhou, Z. H. Feng, S. J. Cai, and K. J. Chen, "Schottky source/drain InAlN/AlN/GaN MISHEMT with enhanced breakdown voltage," IEEE Electron Device Lett., vol. 33, no. 1, pp. 38–40, Oct. 2012.
[73] K. B. Lee, I. Guiney, S. Jiang, Z. H. Zaidi, H. Qian, D. J. Wallis, M. J. Uren, M. Kuball, C. J. Humphreys, and P. A. Houston, "Enhancement-mode metal-insulator-semiconductor GaN/AlInN/GaN heterostructure field-effect transistors on Si with a threshold voltage of +3.0 V and blocking voltage above 1000 V," Appl. Phys. Exp., vol. 8, no. 3, p. 036502, Feb. 2015.
[74] X. Qin, H. Dong, J. Kim, and R. M. Wallace, “A crystalline oxide passivation for Al2O3/AlGaN/GaN,” Appl. Phys. Lett., vol. 105, no. 14, p. 141604, Oct. 2014.
[75] C. Lee, P. Saunier, J. Yang, and M. A. Khan, “AlGaN/GaN HEMTs on SiC with CW power performance of >4W/mm and 23% PAE at 35 GHz,” IEEE Electron Device Lett., vol. 24, no. 10, pp. 616–618, Oct. 2003.
[76] T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “High-power AlGaN/GaN HEMTs for Ka-band applications,” IEEE Electron Device Lett., vol. 26, no. 11, pp. 781–783, Apr. 2005.
[77] J. S. Moon, S. Wu, D. Wong, I. Milosavljevic, A. Conway, P. Hashimoto, M. Hu, M. Antcliffe, and M. Micovic, “Gate-recessed AlGaN–GaN HEMTs for high-performance millimeter-wave applications,” IEEE Electron Device Lett., vol. 26, no. 6, pp. 348–350, Jun. 2005.
[78] D. F. Brown, A. Williams, K. Shinohara, A. Kurdoghlian, I. Milosavljevic, P. Hashimoto, R. Grabar, S. Burnham, C. Butler, P. Willadsen, and M. Micovic, “W-band power performance of AlGaN/GaN DHFETs with regrown n+ GaN ohmic contacts by MBE,” in Proc. IEEE IEDM, pp. 19.3.1–19.3.4, Dec. 2011.
[79] J. S. Moon, D. Wong, M. Hu, P. Hashimoto, M. Antcliffe, C. McGuire, M. Micovic, and P. Willadson, “55% PAE and high power Ka-band GaN HEMTs with linearized transconductance via n+ GaN source contact ledge,” IEEE Electron Device Lett., vol. 29, no. 8, pp. 834–836, Aug. 2008.
[80] R. Sohal, P. Dudek, and O. Hilt, “Comparative study of NH4OH and HCl etching behaviours on AlGaN surfaces,” Appl. Surf. Sci., vol. 256, no. 7, pp. 2210–2214, Jan. 2010.
[81] S. W. King, J. P. Barnak, M. D. Bremser, K. M. Tracy, C. Ronning, R. F. Davis, and R. J. Nemanich, “Cleaning of AlN and GaN surfaces,” J. Appl. Phys., vol. 84, no. 9, pp. 5248–5260, Nov. 1998.
[82] I. Cimalla, F. Will, K. Tonisch, M. Niebelschutz, V. Cimalla, V. Lebedev, G. Kittler, M. Himmerlich, S. Krischok, J.A. Schaefer, M. Gebinoga, A. Schober, T. Friedrich, and O. Ambacher, “AlGaN/GaN biosensor—effect of device processing steps on the surface properties and biocompatibility,” Sens. Actuators, B, vol. 123 no. 2 pp.740–748, May. 2007.
[83] L. L. Smith, S. W. King, R. J. Nemanich, and R. F. Davis, “Cleaning of GaN surfaces,” J. Electron. Mater., vol. 25, no. 5, pp. 805–810, May. 1996.
[84] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys., vol. 81, no. 3, pp. 1315–1322, Feb. 1997.
[85] D. Buttari, A. Chini, T. Palacios, R. Coffie, L. Shen, H. Xing, S. Heikman, L. McCarthy, A. Chakraborty, S. Keller, and U. K. Mishra, “Origin of etch delay time in Cl2 dry etching of AlGaN/GaN structures,” Appl. Phys. Lett., vol. 83,no. 23, pp. 4779–4781, Dec. 2003.
[86] K. Prabhakaran, T. G. Andersson, and K. Nozawa, “Nature of native oxide on GaN surface and its reaction with Al,” Appl. Phys. Lett., vol. 69, no. 21, pp. 3212–3214, Sep. 1996.
[87] T. Hashizume and H. Hasegawa, “Effects of nitrogen deficiency on electronic properties of AlGaN surfaces subjected to thermal and plasma processes,” Appl. Surf. Sci. vol. 234, no.1–4, pp.387–394, July 2004.
[88] Y.-J. Chiu, “SiC backside via process for GaN RF power device application,” National Chiao Tung University Master Thesis, Dec. 2015.
[89] D. Denis, C. M. Snowden, and I. C. Hunter, “Design of power FETs based on coupled electro- thermal-electromagnetic modeling,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, pp. 461–464.
[90] A. Jarndal and G. Kompa, “A new small-signal modeling approach applied to GaN Devices,” IEEE Trans. Electron Devices, vol. 53, no. 11, pp. 3440–3448, Nov. 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔