(3.231.230.175) 您好!臺灣時間:2021/04/16 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孫韻茹
研究生(外文):Sun, Yun-Ru
論文名稱:電漿輔助化學氣相沉積碳氮化矽薄膜之應力與熱膨脹係數研究
論文名稱(外文):Intrinsic stress and thermal expansion coefficient of PECVD silicon carbonitride films using silazane precursors
指導教授:呂志鵬呂志鵬引用關係
指導教授(外文):Leu, Jih-perng
口試委員:呂志鵬張立陳智廖建能
口試委員(外文):Leu, Jih-perngChang, LiChen, chihLiao, Chien-neng
口試日期:2018-8-29
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:172
中文關鍵詞:電漿輔助化學氣相沉積矽碳氮膜應力熱膨脹係數
外文關鍵詞:PECVDSiCNstressthermal expansion coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電漿輔助化學氣相沉積之碳氮化矽薄膜因為其所需的製程溫度低以及可隨成分變動的機械性質,在目前的微機電系統應用中,常被用來作為懸臂或是薄膜的材料。舉例而言,此類薄膜可用作具有應力的額外層,附加沉積在懸臂的結構當中以用來消除或最小化元件中的殘留應力。 因此,碳氮化矽薄膜的應力(包括本質應力和熱應力)對於微機電系統元件的性能至關重要。本研究使用矽碳比(C:N:Si=3:1:1)的單一前驅物1,3,5-trimethyl-1,3,5-trivinylcyclo- trisilazane (VSZ),利用電漿輔助化學氣相沉積法製備碳氮化矽薄膜,並且與另一種單一前驅物所沉積之碳氮化矽薄膜作比較,以探討薄膜的本質應力及熱膨脹係數。具體而言,本研究控制不同的沉積溫度、加入氮氣或是甲烷共同沉積碳氮化矽薄膜,另外對上述不同沉積溫度的碳氮化矽薄膜進行紫外光輔助退火以調變其機械性質。本研究目的:(1)暸解不同處理條件下所製備的碳氮化矽薄膜之本質應力與熱膨脹係數,(2)進而探討碳氮化矽薄膜結構與本質應力及熱膨脹係數的關係,以及(3)建立改變應力的機制及關鍵因素。
我們藉由傅立葉轉換紅外光譜儀得到之光譜分析材料結構,我們觀察到,沉積後之薄膜應力主要受主結構當中的Si-N比例多寡所影響,若主結構當中的Si-N比例增加,即表示薄膜結構傾向於接近純氮化矽膜的結構,使得材料應力傾向拉應力;反之,若主結構當中的Si-N比例減少,即表示薄膜結構傾向於接近純碳化矽膜的結構,使得材料應力傾向表現壓應力。另一方面,薄膜結構當中未交聯的部份-包括來自於前驅物的殘留環狀結構,以及終端基像是氮氫(N-H)和矽氫(Si-H) 鍵結亦會影響薄膜的應力,此類結構的增加會使碳氮化矽薄膜的應力傾向於拉伸應力,這是由於此類結構在薄膜中扮演著微空隙的角色,而這些空隙提供了釋放壓縮應力的空間。 反之,若是此類結構減少將導致碳氮化矽薄膜的壓縮應力增加。
Plasma-enhanced-chemical-vapor-deposition (PECVD) silicon carbonitride film (SiCxNy) have been applied as a material for fabricating cantilevers or membrane in the microelectromechanical systems (MEMS) due to its low deposition temperature and tunable mechanical properties. For instance, PECVD SiCxNy films can be used as an extra layer with stress deposited in the cantilevers to eliminate or minimize the residual stress in device. In consequence, the stress of SiCxNy films, which include the intrinsic stress and thermal stress, are critical for the performance of MEMS. In this study, we characterized the intrinsic stress and thermal expansion coefficient of plasma-enhanced-chemical-vapor-deposition (PECVD) SiCxNy films using a single precursor, 1,3,5-trimethyl-1,3,5-trivinylcyclo- trisilazane (VSZ) with a C/Si ratio of 3 (C:N:Si=3:1:1) and 3 vinyl groups, and another precursor. In specific, SiCxNy films were deposited at various substrate temperatures from 100 to 300 ᵒC under 1 torr. Co-deposition with methane (CH4) or nitrogen (N2) was applied to modulate the stress of SiCxNy films. Since thermal post-treatment is commonly used in the MEMS and CMOS fabrication, we also explored the stress behavior of SiCxNy films post-treated by UV-assisted annealing at 400 oC. In addition, in order to explore the thermal expansion coefficient of SiCxNy films, the thermal stress of films deposited at 100 oC and 300 oC were analysized. The aims of this thesis are (1) to characterize the intrinsic stress and thermal expansion coefficient of SiCxNy films deposited in various conditions, (2) to explore the relationship between the stress behavior as well as thermal expansion coefficient and the structure of SiCxNy films, and (3) to establish the mechanisms affecting the stress of SiCxNy films.
FT-IR spectroscopy is used to analyze the peak position and intensity of the chemical bonds and structures of SiCxNy films deposited at various temperatures using VSZ alone or co-deposition with N2 or CH4 as well as the UV-annealing post-treatment. The Si-N ratio in matrix structure is attributed to be the dominant factor controlling the film stress of SiCxNy films. A higher Si-N ratio in matrix structure, which indicates a more siliconnitride-like structure, yields higher tensile stress. The other controlling factor is the un-crosslink parts including the retained cyclic structures of precursor and the concentration of terminal Si-H and N-H bonds in the thin films. An increase of such structures yields tensile stress in SiCxNy films due to an increase of micro-voids that offer space to release compress stress. On the other hand, a reduction of such structures leads to more compressive stress for SiCxNy films.
摘要 .............................................................................................................................. II
Abstract ....................................................................................................................... IV
Acknowledgements ...................................................................................................... VI
Content ...................................................................................................................... VIII
Figure captions ........................................................................................................... XII
Table captions ........................................................................................................... XXI
Chapter 1 Introduction ........................................................................................... 1
1.1 Background and motivation ............................................................................. 1
1.2 Overview .......................................................................................................... 7
Chapter 2 Literature Review .................................................................................. 8
2.1 Background of silicon carbon nitride films ..................................................... 8
2.2 Application of silicon carbon nitride films-MEMS ....................................... 11
2.3 Stress issues of thin film in devices ............................................................... 24
2.4 Intrinsic stress and thermal stress .................................................................. 28
2.5 Definition of thermal expansion .................................................................... 31
2.6 Methods to obtain thermal expansion coefficient of thin films ..................... 34
Chapter 3 Experimental Section .......................................................................... 37
3.1 Fabrication of SiCxNy thin films ................................................................... 37
3.1.1 Precursor materials.............................................................................. 37


IX
3.1.2 Deposition system and process of SiCxNy thin films ........................ 41
3.1.3 UV-assisted thermal annealing system ............................................... 44
3.2 Characterization Methodologies .................................................................... 46
3.2.1 Bending beam measurement ............................................................... 46
3.2.2 N&K Analyzer .................................................................................... 50
3.2.3 Nanoindenter ....................................................................................... 51
3.2.4 Fourier Transform Infrared Spectroscopy (FTIR) .............................. 55
Chapter 4 Results and Discussion ........................................................................ 56
4.1 As-deposited SiCxNy films at 100 ℃, 200 ℃, and 300 ℃ ........................ 56
4.1.1 The stress behaviors for the SiCxNy thin films prepared by VSZ, and
MTSCP precursors ....................................................................................... 56
4.1.2 Structural characterization VSZ-deposited SiCxNy films by FT-IR
spectroscopy ................................................................................................. 59
4.1.3 Model for the variation of the stress of SiCxNy films at various
temperatures ................................................................................................. 62
4.1.4 The nanoindentation results of SiCxNy films deposited at 100℃and
300 ℃.......................................................................................................... 66
4.1.5 The coefficient of thermal expansion of SiCxNy films deposited at
100℃and 300 ℃ ......................................................................................... 68


X
4.1.6 Model for the variation of the thermal expansion coefficient of SiCxNy
films ............................................................................................................. 71
4.2 Stress behavior of SiCxNy films by co-deposition of VSZ precursor and other gas ............................................................................................................... 73
4.2.1 Stress behavior of SiCxNy films co-deposited of VSZ with CH4 ...... 73
4.2.2 Stress behavior of SiCxNy films co-deposited of VSZ with N2 ........ 74
4.2.3 Structural characterization of SiCxNy films prepared by co-deposition
of VSZ and CH4 .......................................................................................... 75
4.2.4 Structural characterization of SiCxNy films prepared by co-deposition
of VSZ and N2 ............................................................................................. 77
4.2.5The reason for the stress behavior at the co-deposited conditions....... 79
4.3 Post-treatment of SiCxNy films ..................................................................... 81
4.3.1The stress behavior of the UV-assisted annealing on the as-deposited
thin film ........................................................................................................ 81
4.3.2 Structural characterization of SiCxNy films after UV-assisted
annealing ...................................................................................................... 82
4.3.3 The reason for the stress behavior after UV-assisted annealing process
...................................................................................................................... 85
4.4 SiCxNy film stress using different precursor ................................................. 86
4.4.1 Stresses of SiCxNy films deposited by MTSCP ................................. 86


XI
4.4.2 Stresses of SiCxNy films deposited by MTSCP after UV-assisted
annealing. ..................................................................................................... 88
Chapter 5 Conclusions ....................................................................................... 158
Chapter 6 References ......................................................................................... 163
[1] Jedrzejowski, P., et al., Mechanical and optical properties of hard SiCN coatings prepared by PECVD. Thin Solid Films, 2004. 447: p. 201-207.
[2] Kafrouni, W., et al., Synthesis and characterization of silicon carbonitride films by plasma enhanced chemical vapor deposition (PECVD) using bis (dimethylamino) dimethylsilane (BDMADMS), as membrane for a small molecule gas separation. Applied Surface Science, 2010. 257(4): p. 1196-1203.
[3] Liu, L., et al., Study on the performance of PECVD silicon nitride thin films. Defence Technology, 2013. 9(2): p. 121-126.
[4] Mackenzie, K., et al. Stress control of Si-based PECVD dielectrics. in Proceedings of the 207th Electrochemical Society Meeting. 2005.
[5] Martyniuk, M., et al. Stress response of low temperature PECVD silicon nitride thin films to cryogenic thermal cycling. in Optoelectronic and Microelectronic Materials and Devices, 2004 Conference on. 2004. IEEE.
[6] Pereyra, I., et al., Highly ordered amorphous silicon-carbon alloys obtained by RF PECVD. Brazilian Journal of Physics, 2000. 30(3): p. 533-540.
[7] Rahman, H.U., et al. Characterization and optimisation of PECVD Silicon Nitride as dielectric layer for RF MEMS using reflectance measurements. in Antennas, Propagation and EM Theory, 2008. ISAPE 2008. 8th International Symposium on. 2008. IEEE.
[8] Shayapov, V., et al., Mechanical stresses in silicon carbonitride films obtained by PECVD from hexamethyldisilazane. Applied Surface Science, 2013. 265: p. 385-388.
[9] Tu, H.-E., et al., Effect of Porogen Incorporation on Pore Morphology of Low-k SiCxNy Films Prepared Using PECVD. ECS Journal of Solid State Science and Technology, 2015. 4(1): p. N3015-N3022.
[10] Vassallo, E., et al., Structural and optical properties of amorphous hydrogenated silicon carbonitride films produced by PECVD. Applied surface science, 2006. 252(22): p. 7993-8000.
[11] Riedel, R., et al., A covalent micro/nano-composite resistant to high-temperature oxidation. Nature, 1995. 374(6522): p. 526-528.
[12] Thärigen, T., et al., Hard amorphous CSixNy thin films deposited by RF nitrogen plasma assisted pulsed laser ablation of mixed graphite/Si3N4-targets. Thin Solid Films, 1999. 348(1-2): p. 103-113.
[13] Soto, G., et al., Growth of SiC and SiC x N y films by pulsed laser ablation of SiC in Ar and N 2 environments. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1998. 16(3): p. 1311-1315.
[14] He, Z., G. Carter, and J.S. Colligon, Ion-assisted deposition of C N and Si C N films. Thin solid films, 1996. 283(1-2): p. 90-96.
[15] Wu, J.-J., et al., Deposition of silicon carbon nitride films by ion beam sputtering. Thin Solid Films, 1999. 355: p. 417-422.
[16] Berlind, T., et al., Microstructure, mechanical properties, and wetting behavior of Si–C–N thin films grown by reactive magnetron sputtering. Surface and Coatings Technology, 2001. 141(2-3): p. 145-155.
[17] Lutz, H., et al., Surface-and microanalytical characterization of silicon-carbonitride thin films prepared by means of radio-frequency magnetron co-sputtering. Thin Solid Films, 1998. 332(1-2): p. 230-234.
[18] Probst, D., et al., Development of PE-CVD Si/C/N: H films for tribological and corrosive complex-load conditions. Surface and Coatings Technology, 2005. 200(1-4): p. 355-359.
[19] Gong, Z., et al., Influence of deposition condition and hydrogen on amorphous-to-polycrystalline SiCN films. Thin solid films, 1999. 348(1-2): p. 114-121.
[20] Lin, D., et al., Temperature dependence of the direct band gap of Si-containing carbon nitride crystalline films. Physical Review B, 1997. 56(11): p. 6498.
[21] Zhang, D., et al., Influence of silane partial pressure on the properties of amorphous SiCN films prepared by ECR-CVD. Thin Solid Films, 2000. 377: p. 607-610.
[22] Chen, K., et al., Wide band gap silicon carbon nitride films deposited by electron cyclotron resonance plasma chemical vapor deposition. Thin Solid Films, 1999. 355: p. 205-209.
[23] Gomez, F., et al., SiCN alloys deposited by electron cyclotron resonance plasma chemical vapor deposition. Applied physics letters, 1996. 69(6): p. 773-775.
[24] Fainer, N., et al., Thin silicon carbonitride films are perspective low-k materials. Journal of Physics and Chemistry of Solids, 2008. 69(2-3): p. 661-668.
[25] Tu, H.-E., Y.-H. Chen, and J. Leu, Low-k SiCxNy films prepared by plasma-enhanced chemical vapor deposition using 1, 3, 5-trimethyl-1, 3, 5-trivinylcyclotrisilazane precursor. Journal of The Electrochemical Society, 2012. 159(5): p. G56-G61.
[26] Wrobel, A., et al., Hard and high-temperature-resistant silicon carbonitride coatings based on N-silyl-substituted cyclodisilazane rings. Journal of the Electrochemical Society, 2008. 155(4): p. K66-K76.
[27] Wang, Y., et al., A comparative study of low dielectric constant barrier layer, etch stop and hardmask films of hydrogenated amorphous Si-(C, O, N). Thin Solid Films, 2004. 460(1-2): p. 211-216.
[28] Zhou, Y., et al., Hard silicon carbonitride films obtained by RF-plasma-enhanced chemical vapour deposition using the single-source precursor bis (trimethylsilyl) carbodiimide. Journal of the European Ceramic Society, 2006. 26(8): p. 1325-1335.
[29] Chen, C., et al., Optical properties and photoconductivity of amorphous silicon carbon nitride thin film and its application for UV detection. Diamond and related materials, 2005. 14(3-7): p. 1010-1013.
[30] Afanasyev-Charkin, I. and M. Nastasi, Hard Si–N–C films with a tunable band gap produced by pulsed glow discharge deposition. Surface and Coatings Technology, 2005. 199(1): p. 38-42.
[31] Chen, C.-W., et al., Photoconductivity and highly selective ultraviolet sensing features of amorphous silicon carbon nitride thin films. Applied physics letters, 2006. 88(7): p. 073515.
[32] Chou, T.-H., et al., A low cost n-SiCN/p-SiCN homojunction for high temperature and high gain ultraviolet detecting applications. Sensors and Actuators A: Physical, 2008. 147(1): p. 60-63.
[33] Vetter, M., et al., IR-study of a-SiCx: H and a-SiCxNy: H films for c-Si surface passivation. Thin Solid Films, 2004. 451: p. 340-344.
[34] Limmanee, A., et al., Effect of thermal annealing on the properties of a-SiCN: H films by hot wire chemical vapor deposition using hexamethyldisilazane. Thin Solid Films, 2008. 516(5): p. 652-655.
[35] Vlček, J., et al., Reactive magnetron sputtering of Si–C–N films with controlled mechanical and optical properties. Diamond and related materials, 2003. 12(8): p. 1287-1294.
[36] Chang, H.L. and C.T. Kuo, Characteristics of Si C N films deposited by microwave plasma CVD on Si wafers with various buffer layer materials. Diamond and related materials, 2001. 10(9-10): p. 1910-1915.
[37] Schwarz, F., et al., Thermal Stability of PIII Deposited Hard‐Coatings with Compositions Between Diamond‐Like Carbon and Amorphous Silicon‐Carbonitride. Plasma Processes and Polymers, 2007. 4(S1).
[38] Liu, Y., et al. Fabrication of SiCN MEMS structures using microforged molds. in Micro Electro Mechanical Systems, 2001. MEMS 2001. The 14th IEEE International Conference on. 2001. IEEE.
[39] Wang, H.T., et al. Fabrication of SiCN MEMS by UV lithography of Polysilazane. in Key Engineering Materials. 2007. Trans Tech Publ.
[40] Liew, L.-A., et al. Development of SiCN ceramic thermal actuators. in Micro Electro Mechanical Systems, 2002. The Fifteenth IEEE International Conference on. 2002. IEEE.
[41] Weng, C.-J., Integrated process feasibility of hard-mask for tight pitch interconnects fabrication, in MEMS and Nanotechnology, Volume 4. 2011, Springer. p. 1-7.
[42] Uttamchandani, D., Handbook of MEMS for wireless and mobile applications. 2013: Elsevier.
[43] Bhushan, B., Springer handbook of nanotechnology. 2017: Springer.
[44] Mattox, D.M., Atomistic film growth and resulting film properties: residual film stress. Vacuum technology & coating, November, 2001: p. 22-23.
[45] Xue, X., et al., Experimental Investigation on Buckling of Thin Films in Mechanical-Thermal Coupled-Field. Physics Procedia, 2011. 19: p. 158-163.
[46] Moody, N.R., M.S. Kennedy, and D.F. Bahr, Reliability of materials in MEMS: residual stress and adhesion in a micro power generation system. 2007, Sandia National Laboratories.
[47] Wang, S., et al. Buckling of thin films in nano-scale. in EPJ Web of Conferences. 2010. EDP Sciences.
[48] Liu, X., et al., Delamination in patterned films. International Journal of Solids and Structures, 2007. 44(6): p. 1706-1718.
[49] Hollauer, C., et al. Investigation of intrinsic stress effects in cantilever structures. in Nano/Micro Engineered and Molecular Systems, 2007. NEMS'07. 2nd IEEE International Conference on. 2007. IEEE.
[50] Huang, Y., et al., MEMS reliability review. IEEE Transactions on Device and Materials Reliability, 2012. 12(2): p. 482-493.
[51] Neethirajan, S., T. Ono, and E. Masayoshi, Characterization of catalytic chemical vapor-deposited SiCN thin film coatings. International Nano Letters, 2012. 2(1): p. 4.
[52] Ozawa, K., N. Takagi, and K. Asama, Effect of deposition conditions on intrinsic stress in a-Si: H films. Japanese journal of applied physics, 1983. 22(5R): p. 767.
[53] Ito, T., N. Fujimura, and Y. Nakayama, Change in Film Stress of a-Si: H by Annealing. Transactions of the Japan Institute of Metals, 1986. 27(10): p. 789-790.
[54] Tinone, M.C., T. Haga, and H. Kinoshita, Multilayer sputter deposition stress control. Journal of electron spectroscopy and related phenomena, 1996. 80: p. 461-464.
[55] Finot, E., A. Passian, and T. Thundat, Measurement of mechanical properties of cantilever shaped materials. Sensors, 2008. 8(5): p. 3497-3541.
[56] Tanaka, M., An industrial and applied review of new MEMS devices features. Microelectronic engineering, 2007. 84(5-8): p. 1341-1344.
[57] Zheng, W., et al., Diazonium chemistry for the bio-functionalization of glassy nanostring resonator arrays. Sensors, 2015. 15(8): p. 18724-18741.
[58] Fischer, L., et al., Low-stress silicon carbonitride for the machining of high-frequency nanomechanical resonators. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2007. 25(1): p. 33-37.
[59] Davis, Z.J., W. Svendsen, and A. Boisen, Design, fabrication and testing of a novel MEMS resonator for mass sensing applications. Microelectronic Engineering, 2007. 84(5-8): p. 1601-1605.
[60] Vashist, S.K., A review of microcantilevers for sensing applications. J. of Nanotechnology, 2007. 3: p. 1-18.
[61] Leo, A., et al., Characterization of thick and thin film SiCN for pressure sensing at high temperatures. Sensors, 2010. 10(2): p. 1338-1354.
[62] Liu, Y., et al., Application of microforging to SiCN MEMS fabrication. Sensors and Actuators A: Physical, 2002. 95(2-3): p. 143-151.
[63] Liew, L.-A., et al., Processing and characterization of silicon carbon-nitride ceramics: application of electrical properties towards MEMS thermal actuators. Sensors and Actuators A: Physical, 2003. 103(1-2): p. 171-181.
[64] Firdaus, S.M., H. Omar, and I.A. Azid, High sensitive piezoresistive cantilever MEMS based sensor by introducing stress concentration region (SCR), in Finite element analysis-new trends and developments. 2012, InTech.
[65] Chu, C.-H., et al., A low actuation voltage electrostatic actuator for RF MEMS switch applications. Journal of micromechanics and microengineering, 2007. 17(8): p. 1649.
[66] Byron, R. and P. Hassanpour. Reducing Stress Concentration in RF MEMS Switch by Optimizing Serpentine Spring Design. in ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2015. American Society of Mechanical Engineers.
[67] Zhang, W.-M., G. Meng, and D. Chen, Stability, nonlinearity and reliability of electrostatically actuated MEMS devices. Sensors, 2007. 7(5): p. 760-796.
[68] Kahn, H., et al., Fracture toughness of polysilicon MEMS devices. Sensors and Actuators A: Physical, 2000. 82(1-3): p. 274-280.
[69] Laconte, J., D. Flandre, and J.-P. Raskin, Thin dielectric films stress extraction. Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration, 2006: p. 47-103.
[70] Miller, W., et al., Negative thermal expansion: a review. Journal of materials science, 2009. 44(20): p. 5441-5451.
[71] Fang, W. and C.-Y. Lo, On the thermal expansion coefficients of thin films. Sensors and Actuators A: Physical, 2000. 84(3): p. 310-314.
[72] Fang, W. and J. Wickert, Determining mean and gradient residual stresses in thin films using micromachined cantilevers. Journal of Micromechanics and Microengineering, 1996. 6(3): p. 301.
[73] Huang, Y.-C., S.-Y. Chang, and C.-H. Chang, Effect of residual stresses on mechanical properties and interface adhesion strength of SiN thin films. Thin Solid Films, 2009. 517(17): p. 4857-4861.
[74] Kumon, R. and D.C. Hurley, Effects of residual stress on the thin-film elastic moduli calculated from surface acoustic wave spectroscopy experiments. Thin Solid Films, 2005. 484(1-2): p. 251-256.
[75] Izumi, H., et al., Electrical and structural properties of indium tin oxide films prepared by pulsed laser deposition. Journal of applied physics, 2002. 91(3): p. 1213-1218.
[76] Kumar, N., et al., Design of low surface roughness-low residual stress-high optoelectronic merit a-IZO thin films for flexible OLEDs. Journal of Applied Physics, 2016. 119(22): p. 225303.
[77] Lee, J.W., et al., Effects of residual stress on the electrical properties of PZT films. Journal of the American Ceramic Society, 2007. 90(4): p. 1077-1080.
[78] Morito, K. and T. Suzuki, Effect of internal residual stress on the dielectric properties and microstructure of sputter-deposited polycrystalline (Ba, Sr) Ti O 3 thin films. Journal of Applied Physics, 2005. 97(10): p. 104107.
[79] Yoon, S., et al., Comparision of residual stress and optical properties in Ta2O5 thin films deposited by single and dual ion beam sputtering. Materials Science and Engineering: B, 2005. 118(1-3): p. 234-237.
[80] Zhao, Y., et al., Effects of uniaxial stress on the electrical structure and optical properties of Al-doped n-type ZnO. Solar Energy, 2016. 140: p. 21-26.
[81] Harriman, T., et al., Frequency shifts of the E2high Raman mode due to residual stress in epitaxial ZnO thin films. Applied Physics Letters, 2013. 103(12): p. 121904.
[82] Yamamoto, N., et al., Relationship between residual stress and crystallographic structure in Ga-doped ZnO film. Journal of the Electrochemical Society, 2008. 155(9): p. J221-J225.
[83] Gadre, K.S. and T. Alford, Crack formation in TiN films deposited on Pa-n due to large thermal mismatch. Thin Solid Films, 2001. 394(1-2): p. 124-129.
[84] Champi, A., et al., Thermal expansion dependence on the sp2 concentration of amorphous carbon and carbon nitride. Journal of non-crystalline solids, 2004. 338: p. 499-502.
[85] Janssen, G., et al., Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Films, 2009. 517(6): p. 1858-1867.
[86] Blech, I.A. and P. Wood, Linear thermal expansion coefficient and biaxial elastic modulus of diamondlike carbon films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1993. 11(3): p. 728-729.
[87] Zhao, J.-H., et al., Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films. Journal of applied physics, 1999. 85(9): p. 6421-6424.
[88] Ardigo, M.R., M. Ahmed, and A. Besnard. Stoney formula: Investigation of curvature measurements by optical profilometer. in Advanced Materials Research. 2014. Trans Tech Publ.
[89] Vanstreels, K. and A.M. Urbanowicz, Nanoindentation study of thin plasma enhanced chemical vapor deposition SiCOH low-k films modified in He/H 2 downstream plasma. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010. 28(1): p. 173-179.
[90] Sinha, A., H. Levinstein, and T. Smith, Thermal stresses and cracking resistance of dielectric films (SiN, Si3N4, and SiO2) on Si substrates. Journal of applied physics, 1978. 49(4): p. 2423-2426.
[91] Hamm, S.C., et al., Characterization and versatile applications of low hydrogen content SiOCN grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2014. 116(10): p. 104902.
[92] Fainer, N., et al., Low-k dielectrics on base of silicon carbon nitride films. Surface and Coatings Technology, 2007. 201(22-23): p. 9269-9274.
[93] Lubguban Jr, J., et al., Low-k organosilicate films prepared by tetravinyltetramethylcyclotetrasiloxane. Journal of applied physics, 2002. 92(2): p. 1033-1038.
[94] Coclite, A.M., et al., Single‐Chamber Deposition of Multilayer Barriers by Plasma Enhanced and Initiated Chemical Vapor Deposition of Organosilicones. Plasma Processes and Polymers, 2010. 7(7): p. 561-570.
[95] Zera, E., et al., Synthesis and characterization of polymer-derived SiCN aerogel. Journal of the European Ceramic Society, 2015. 35(12): p. 3295-3302.
[96] Chen, Z., et al., Characterization and performance of dielectric diffusion barriers for Cu metallization. Thin Solid Films, 2004. 462: p. 223-226.
[97] Gillespie, R., The valence-shell electron-pair repulsion (VSEPR) theory of directed valency. Journal of Chemical Education, 1963. 40(6): p. 295.
[98] Spear, W. and M. Heintze, The effects of applied and internal strain on the electronic propertiesof amorphous silicon. Philosophical Magazine B, 1986. 54(5): p. 343-358.
[99] Novikov, V. and A. Sokolov, Poisson's ratio and the fragility of glass-forming liquids. Nature, 2004. 431(7011): p. 961.
[100] Kolli, M., et al., HF etching effect on sandblasted soda-lime glass properties. Journal of the European Ceramic Society, 2009. 29(13): p. 2697-2704.
[101] Deschamps, T., et al., Soda-lime silicate glass under hydrostatic pressure and indentation: a micro-Raman study. Journal of Physics: Condensed Matter, 2011. 23(3): p. 035402.
[102] Mayrhofer, P., et al., A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings. Thin Solid Films, 2002. 415(1-2): p. 151-159.
[103] de Lima Jr, M., et al., Coefficient of thermal expansion and elastic modulus of thin films. Journal of Applied Physics, 1999. 86(9): p. 4936-4942.
[104] Marques, F., et al., Thermal expansion coefficient of hydrogenated amorphous carbon. Applied physics letters, 2003. 83(15): p. 3099-3101.
[105] Bogdanowicz, R., Investigation of H2: CH4 plasma composition by means of spatially resolved optical spectroscopy. Acta Physica Polonica A, 2008. 114(6A).
電子全文 電子全文(網際網路公開日期:20230829)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔