(3.235.25.169) 您好!臺灣時間:2021/04/20 17:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠豪
研究生(外文):Chen, Kuan-Hao
論文名稱:以分子動力學探討高熵合金之晶格扭曲效應在彈性區間對機械性質影響
論文名稱(外文):Influence of the Lattice Distortion Effect on Mechanical Properties in Elastic Region of High Entropy Alloys by Molecular Dynamics
指導教授:羅友杰
指導教授(外文):Lo, Yu-Chieh
口試委員:郭錦龍張書瑋鄒年棣
口試委員(外文):Kuo, Chin-LungChang, Shu-WeiTsou, Nien-Ti
口試日期:2018-09-13
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:67
中文關鍵詞:分子動力學高熵合金晶格扭曲彈性常數
外文關鍵詞:Molecular dynamicsHigh entropy alloysLattice distortionElastic constants
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在高熵合金中,晶格扭曲(lattice distortion)是主要效應之一。所以有系統性的了解晶格扭曲對高熵合金的物理、機械性質之影響是必要的。本研究以分子動力學模擬高熵合金在不同晶格扭曲程度下的機械性質。模型由Embedded atom method(EAM)勢能所組成,將主要探討在彈性區間且具有晶格扭曲效應下,對於不同系統之彈性常數(C11、C12、C44)與各元素在[100]、[110]以及[111]的局部彈性行為。
根據EAM模擬結果得知,合金系統的組成元素越多,彈性異向性則越不明顯。從高熵合金分析得知,系統中有些原子被放大;有些則是被縮小,這現象也說明焓(enthalpy)與局部晶格扭曲(local lattice distortion)在高熵合金中的影響是重要的。
Lattice distortion is one of the core effects of high entropy alloys (HEAs), so it is necessary to systematically study how it could affect physical/mechanical properties of HEAs. In the research, we conduct molecular dynamics to simulate mechanical properties of HEAs at different levels of lattice distortion. Simulation models are composed of Embedded atom method (EAM) potential. The elastic constants (C11, C12, C44) of different systems and local elasticity behaviors of each element at [100], [110], [111] will be mainly discussed in elastic region.
According to the simulation results of EAM, the more ingredient elements are, the less apparent elastic anisotropy is. With analysis of HEAs, we find some atoms are amplified and some atoms are shrunk. This phenomenon also prove that the effect of enthalpy and local lattice distortion are very important in HEAs.
中文摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
第一章 序論 1
1.1 研究動機與目的 1
1.2 高熵合金簡介 3
1.2.1 高熵合金之發展 3
1.2.2 高熵合金之核心效應 3
1.2.3 高熵合金之特性以及應用 5
1.2.4 高熵合金機械性質與變形行為 9
1.2.5 高熵合金結構缺陷與變形行為之模擬 12
第二章 模擬方法與理論介紹 17
2.1 分子動力學 17
2.1.1 運動方程式 17
2.1.2 勢能函數 19
2.1.3 週期性邊界條件及截斷半徑 21
2.1.4 時間步階(Time Step)設定 22
2.2 晶體材料結構與機械性質 24
2.2.1 晶體結構 24
2.2.2 晶體材料之彈性常數 25
2.2.3 晶體材料之楊氏模數 26
2.2.4 異向性 27
2.3 結構扭曲 31
第三章 研究方法 33
3.1 計算條件 33
3.2 模型建立 34
第四章 結果與討論 36
4.1 巨觀分析 36
4.1.1 彈性常數計算 36
4.1.2 楊氏模數計算 37
4.1.3 異向性趨勢 37
4.2 微觀分析 39
4.2.1 5A_Lee之分析 41
4.2.2 3A之分析 47
4.2.3 1A4之分析 50
4.2.4 1A2之分析 53
第五章 結論 56
參考文獻 57
[1] Mallick, P. K. (Ed.). (1997). Composites engineering handbook. CRC Press.
[2] HandbookCommittee, Metals Handbook (Davis JR, Ed.), 10 ed. vol. 1,2. Metals
Park, OH: ASM International, 1990.
[3] J. H. Westbrook, “Intermetallic Compounds: Principles and Practice (Westbrook JH, Fleischer RL, Eds.)” ed New York: Wiley, 1995.
[4] HandbookCommittee, in Metals Handbook (Davis JR, Ed.). vol. 7, 10 ed. Metals Park, OH: ASM International, 1990.
[5] He, G., Eckert, J., Löser, W., & Schultz, L. (2003). Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nature materials, 2(1), 33.
[6] HandbookCommittee, in Metals Handbook (Baker H, Ed.). vol. 3, 10 ed. Metals Park, OH: ASM International, 1992.
[7] Greer, A. L. (1993). Confusion by design. Nature, 366(6453), 303.
[8] De Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., & Niessen, A. K. (1988). Cohesion in Metals: Transition Metal Alloys. Vol. 1. Elsevier Science Publishers B. V., 1988,, 758.
[9] Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., ... & Chang, S. Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299-303.
[10] Yeh, J. W., Chang, S. Y., Hong, Y. D., Chen, S. K., & Lin, S. J. (2007). Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials chemistry and physics, 103(1), 41-46.
[11] Wang, W. R., Wang, W. L., Wang, S. C., Tsai, Y. C., Lai, C. H., & Yeh, J. W. (2012). Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 26, 44-51.
[12] Yeh, J. W., Lin, S. J., Chin, T. S., Gan, J. Y., Chen, S. K., Shun, T. T., ... & Chou, S. Y. (2004). Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A, 35(8), 2533-2536.
[13] Tung, C. C., Yeh, J. W., Shun, T. T., Chen, S. K., Huang, Y. S., & Chen, H. C. (2007). On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Materials letters, 61(1), 1-5.
[14] Tsai, K. Y., Tsai, M. H., & Yeh, J. W. (2013). Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 61(13), 4887-4897.
[15] Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93.
[16] Murty, B. S., Yeh, J. W., & Ranganathan, S. (2014). High-entropy alloys. Butterworth-Heinemann.
[17] Gao, M. C., Yeh, J. W., Liaw, P. K., & Zhang, Y. (2016). High-Entropy Alloys. Springer International Publishing.
[18] Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E. H., George, E. P., & Ritchie, R. O. (2014). A fracture-resistant high-entropy alloy for cryogenic applications. Science, 345(6201), 1153-1158.
[19] Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., & George, E. P. (2013). The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 61(15), 5743-5755.
[20] Gludovatz, B., Hohenwarter, A., Thurston, K. V., Bei, H., Wu, Z., George, E. P., & Ritchie, R. O. (2016). Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nature communications, 7, 10602.
[21] Li, Z., Pradeep, K. G., Deng, Y., Raabe, D., & Tasan, C. C. (2016). Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature, 534(7606), 227.
[22] Yao, M. J., Pradeep, K. G., Tasan, C. C., & Raabe, D. (2014). A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia, 72, 5-8.
[23] Deng, Y., Tasan, C. C., Pradeep, K. G., Springer, H., Kostka, A., & Raabe, D. (2015). Design of a twinning-induced plasticity high entropy alloy. Acta Materialia, 94, 124-133.
[24] Lai, C. H., Lin, S. J., Yeh, J. W., & Chang, S. Y. (2006). Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surface and Coatings Technology, 201(6), 3275-3280.
[25] Lai, C. H., Lin, S. J., Yeh, J. W., & Davison, A. (2006). Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr) N coatings. Journal of Physics D: Applied Physics, 39(21), 4628.
[26] Chang, S. Y., Lin, S. Y., Huang, Y. C., & Wu, C. L. (2010). Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr) Nx multi-component coatings. Surface and Coatings Technology, 204(20), 3307-3314.
[27] Lin, S. Y., Chang, S. Y., Huang, Y. C., Shieu, F. S., & Yeh, J. W. (2012). Mechanical performance and nanoindenting deformation of (AlCrTaTiZr) NCy multi-component coatings co-sputtered with bias. Surface and Coatings Technology, 206(24), 5096-5102.
[28] Lin, S. Y., Chang, S. Y., Chang, C. J., & Huang, Y. C. (2013). Nanomechanical properties and deformation behaviors of multi-component (AlCrTaTiZr) NxSiy high-entropy coatings. Entropy, 16(1), 405-417.
[29] Chang, S. Y., Chen, M. K., & Chen, D. S. (2009). Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization. Journal of The Electrochemical Society, 156(5), G37-G42.
[30] Chang, S. Y., & Chen, D. S. (2009). 10-nm-thick quinary (AlCrTaTiZr) N film as effective diffusion barrier for Cu interconnects at 900 C. Applied Physics Letters, 94(23), 231909.
[31] Chang, S. Y., Wang, C. Y., Chen, M. K., & Li, C. E. (2011). Ru incorporation on marked enhancement of diffusion resistance of multi-component alloy barrier layers. Journal of Alloys and Compounds, 509(5), L85-L89.
[32] Chang, S. Y., Li, C. E., Chiang, S. C., & Huang, Y. C. (2012). 4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr) Nx as robust diffusion barrier for Cu interconnects. Journal of Alloys and Compounds, 515, 4-7.
[33] Chang, S. Y., Li, C. E., Huang, Y. C., Hsu, H. F., Yeh, J. W., & Lin, S. J. (2014). Structural and thermodynamic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials. Scientific reports, 4, 4162.
[34] Hsu, C. Y., Yeh, J. W., Chen, S. K., & Shun, T. T. (2004). Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition. Metallurgical and Materials Transactions A, 35(5), 1465-1469.
[35] Chen, M. R., Lin, S. J., Yeh, J. W., Chuang, M. H., Chen, S. K., & Huang, Y. S. (2006). Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al 0.5 CoCrCuFeNi high-entropy alloy. Metallurgical and Materials Transactions A, 37(5), 1363-1369.
[36] Chen, M. R., Lin, S. J., Yeh, J. W., Chen, S. K., Huang, Y. S., & Tu, C. P. (2006). Microstructure and properties of Al0. 5CoCrCuFeNiTix (x= 0–2.0) high-entropy alloys. Materials transactions, 47(5), 1395-1401.
[37] Wu, J. M., Lin, S. J., Yeh, J. W., Chen, S. K., Huang, Y. S., & Chen, H. C. (2006). Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 261(5-6), 513-519.
[38] Senkov, O. N., Wilks, G. B., Scott, J. M., & Miracle, D. B. (2011). Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19(5), 698-706.
[39] Senkov, O. N., Senkova, S. V., Miracle, D. B., & Woodward, C. (2013). Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Materials Science and Engineering: A, 565, 51-62.
[40] Miracle, D. B., & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511.
[41] Chen, Y. Y., Hong, U. T., Shih, H. C., Yeh, J. W., & Duval, T. (2005). Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel. Corrosion Science, 47(11), 2679-2699.
[42] Chen, Y. Y., Hong, U. T., Yeh, J. W., & Shih, H. C. (2005). Mechanical properties of a bulk Cu 0.5 Ni Al Co Cr Fe Si glassy alloy in 288° C high-purity water. Applied Physics Letters, 87(26), 261918.
[43] Chen, Y. Y., Hong, U. T., Yeh, J. W., & Shih, H. C. (2006). Selected corrosion behaviors of a Cu0. 5NiAlCoCrFeSi bulk glassy alloy in 288 C high-purity water. Scripta materialia, 54(12), 1997-2001.
[44] Zhang, Z., Mao, M. M., Wang, J., Gludovatz, B., Zhang, Z., Mao, S. X., ... & Ritchie, R. O. (2015). Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nature communications, 6, 10143.
[45] Schuh, C. A., Hufnagel, T. C., & Ramamurty, U. (2007). Mechanical behavior of amorphous alloys. Acta Materialia, 55(12), 4067-4109.
[46] Greer, A. L., Cheng, Y. Q., & Ma, E. (2013). Shear bands in metallic glasses. Materials Science and Engineering: R: Reports, 74(4), 71-132.
[47] Gao, Y. F. (2006). An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model. Modelling and Simulation in Materials Science and Engineering, 14(8), 1329.
[48] Cheng, Y. Q., & Ma, E. (2011). Atomic-level structure and structure–property relationship in metallic glasses. Progress in materials science, 56(4), 379-473.
[49] Nam, S. W., Chung, H. S., Lo, Y. C., Qi, L., Li, J., Lu, Y., ... & Agarwal, R. (2012). Electrical wind force–driven and dislocation-templated amorphization in phase-change nanowires. Science, 336(6088), 1561-1566.
[50] Wang, S. (2013). Atomic structure modeling of multi-principal-element alloys by the principle of maximum entropy. Entropy, 15(12), 5536-5548.
[51] Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., & Raabe, D. (2015). Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Materialia, 100, 90-97.
[52] Niu, C., Zaddach, A. J., Koch, C. C., & Irving, D. L. (2016). First principles exploration of near-equiatomic NiFeCrCo high entropy alloys. Journal of Alloys and Compounds, 672, 510-520.
[53] Tian, L. Y., Wang, G., Harris, J. S., Irving, D. L., Zhao, J., & Vitos, L. (2017). Alloying effect on the elastic properties of refractory high-entropy alloys. Materials & Design, 114, 243-252.
[54] Huang, S., Li, W., Lu, S., Tian, F., Shen, J., Holmström, E., & Vitos, L. (2015). Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scripta Materialia, 108, 44-47.
[55] Zaddach, A. J., Niu, C., Koch, C. C., & Irving, D. L. (2013). Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. Jom, 65(12), 1780-1789.
[56] Patriarca, L., Ojha, A., Sehitoglu, H., & Chumlyakov, Y. I. (2016). Slip nucleation in single crystal FeNiCoCrMn high entropy alloy. Scripta Materialia, 112, 54-57.
[57] Tian, F., Wang, D., Shen, J., & Wang, Y. (2016). An ab initio investgation of ideal tensile and shear strength of TiVNbMo high-entropy alloy. Materials Letters, 166, 271-275.
[58] Huang, S., Li, W., Li, X., Schönecker, S., Bergqvist, L., Holmström, E., ... & Vitos, L. (2016). Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Materials & design, 103, 71-74.
[59] Liu, Z., Lei, Y., Gray, C., & Wang, G. (2015). Examination of solid-solution phase formation rules for high entropy alloys from atomistic Monte Carlo simulations. JOM, 67(10), 2364-2374.
[60] Widom, M., Huhn, W. P., Maiti, S., & Steurer, W. (2014). Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metallurgical and Materials Transactions A, 45(1), 196-200.
[61] He, Q. F., Ye, Y. F., & Yang, Y. (2016). The configurational entropy of mixing of metastable random solid solution in complex multicomponent alloys. Journal of Applied Physics, 120(15), 154902.
[62] Li, S., Li, Y., Lo, Y. C., Neeraj, T., Srinivasan, R., Ding, X., ... & Li, J. (2015). The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in α-Fe. International Journal of Plasticity, 74, 175-191.
[63] Li, Q. J., Li, J., Shan, Z. W., & Ma, E. (2016). Surface rebound of relativistic dislocations directly and efficiently initiates deformation twinning. Physical review letters, 117(16), 165501.
[64] Möller, J. J., & Bitzek, E. (2014). Fracture toughness and bond trapping of grain boundary cracks. Acta Materialia, 73, 1-11.
[65] Du, J. P., Wang, Y. J., Lo, Y. C., Wan, L., & Ogata, S. (2016). Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: An accelerated molecular dynamics study. Physical Review B, 94(10), 104110.
[66] Mao, Y., Li, J., Lo, Y. C., Qian, X., & Ma, E. (2015). Stress-driven crystallization via shear-diffusion transformations in a metallic glass at very low temperatures. Physical Review B, 91(21), 214103.
[67] Sharma, A., Deshmukh, S. A., Liaw, P. K., & Balasubramanian, G. (2017). Crystallization kinetics in AlxCrCoFeNi (0≤ x≤ 40) high-entropy alloys. Scripta Materialia, 141, 54-57.
[68] Li, J., Fang, Q., Liu, B., & Liu, Y. (2018). Transformation induced softening and plasticity in high entropy alloys. Acta Materialia, 147, 35-41.
[69] Diao, H., Santodonato, L. J., Tang, Z., Egami, T., & Liaw, P. K. (2015). Local structures of high-entropy alloys (HEAs) on atomic scales: An overview. Jom, 67(10), 2321-2325.
[70] Zheng, S. M., Feng, W. Q., & Wang, S. Q. (2018). Elastic properties of high entropy alloys by MaxEnt approach. Computational Materials Science, 142, 332-337.
[71] Meraj, M., & Pal, S. (2016, February). Deformation of Ni20W20Cu20Fe20Mo20 high entropy alloy for tensile followed by compressive and compressive followed by tensile loading: A molecular dynamics simulation based study. In IOP Conference Series: Materials Science and Engineering (Vol. 115, No. 1, p. 012019). IOP Publishing.
[72] Anand, G., Goodall, R., & Freeman, C. L. (2016). Role of configurational entropy in body-centred cubic or face-centred cubic phase formation in high entropy alloys. Scripta Materialia, 124, 90-94.
[73] Sharma, A., Singh, P., Johnson, D. D., Liaw, P. K., & Balasubramanian, G. (2016). Atomistic clustering-ordering and high-strain deformation of an Al 0.1 CrCoFeNi high-entropy alloy. Scientific reports, 6, 31028.
[74] Xie, L., Brault, P., Thomann, A. L., Yang, X., Zhang, Y., & Shang, G. (2016). Molecular dynamics simulation of Al–Co–Cr–Cu–Fe–Ni high entropy alloy thin film growth. Intermetallics, 68, 78-86.
[75] Xie, L., Brault, P., Thomann, A. L., & Bauchire, J. M. (2013). AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: A classical molecular dynamics simulation study. Applied Surface Science, 285, 810-816.
[76] Choi, W. M., Jo, Y. H., Sohn, S. S., Lee, S., & Lee, B. J. (2018). Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. npj Computational Materials, 4(1), 1.
[77] Tuckerman, M. E., Berne, B. J., Martyna, G. J., & Klein, M. L. (1993). Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals. The Journal of Chemical Physics, 99(4), 2796-2808.
[78] B. J. Alder and T. E. Wainwright, 1959, Studies in Molecular Dynamics. I. General Method, Journal of Chemical Physics, Vol. 31, pp. 459-466.
[79] S. M. Foiles, M. I. Baskes and M. S. Daw, 1986, Embedded-Atom-Method-
Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and their Alloys, Physical Review B, Vol. 33, pp.7983-7991.
[80] J. E. Lennard-Jones, 1931, Cohesion, Proceedings of the Physical Society, Vol.
43, pp. 461-482.
[81] I. G. Kaplan, 2003, Handbook of Molecular Physics and Quantum Chemistry, Wiley.
[82] T. C. Choy, 1999, Effective Medium Theory: Principles and Applications, Oxford Press
[83] M. Z. Bazant and E. Kaxiras, 1997, Environment Dependent Interatomic Potential for Bulk Silicon, Physics Review B, Vol. 56, p.85427.
[84] Baskes, M. I. (1987). Application of the embedded-atom method to covalent materials: a semiempirical potential for silicon. Physical review letters, 59(23), 2666.
[85] Baskes, M. I., Nelson, J. S., & Wright, A. F. (1989). Semiempirical modified embedded-atom potentials for silicon and germanium. Physical Review B, 40(9), 6085.
[86] Baskes, M. I. (1992). Modified embedded-atom potentials for cubic materials and
impurities. Physical Review B, 46(5), 2727.
[87] Baskes, M. I., & Johnson, R. A. (1994). Modified embedded atom potentials for HCP metal. Modeling and simulation in Materials Science and Engineering, 2(1), 147.
[88] Mouhat, F., & Coudert, F. X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90(22), 224104.
[89] Kiely, J. D., & Houston, J. E. (1998). Nanomechanical properties of Au (111),(001),
and (110) surfaces. Physical Review B, 57(19), 12588.
[90] Wang, W., & Lu, K. (2002). Nanoindentation measurement of hardness and modulus anisotropy in Ni 3 Al single crystals. Journal of materials research, 17(9), 2314-2320.
[91] Vlassak, J. J., Ciavarella, M., Barber, J. R., & Wang, X. (2003). The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. Journal of the Mechanics and Physics of Solids, 51(9), 1701-1721.
[92] Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., & Liaw, P. K. (2008). Solid‐solution phase formation rules for multi‐component alloys. Advanced Engineering Materials, 10(6), 534-538.
[93] Mishin, Y., Farkas, D., Mehl, M. J., & Papaconstantopoulos, D. A. (1999). Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Physical Review B, 59(5), 3393.
[94] Zhou, X. W., Johnson, R. A., & Wadley, H. N. G. (2004). Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Physical Review B, 69(14), 144113.
[95] Bonny, G., Castin, N., & Terentyev, D. (2013). Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Modelling and Simulation in Materials Science and Engineering, 21(8), 085004.
[96] Huang, E. W., Yu, D., Yeh, J. W., Lee, C., An, K., & Tu, S. Y. (2015). A study of lattice elasticity from low entropy metals to medium and high entropy alloys. Scripta Materialia, 101, 32-35.
[97] Tian, F., Varga, L. K., Chen, N., Delczeg, L., & Vitos, L. (2013). Ab initio investigation of high-entropy alloys of 3d elements. Physical Review B, 87(7), 075144.
電子全文 電子全文(網際網路公開日期:20230924)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔