(3.215.180.226) 您好!臺灣時間:2021/03/06 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳政翰
研究生(外文):Wu, Cheng Han
論文名稱:前驅物堆疊及硒硫化製程對CIGS太陽電池之微觀組織與電性改善之研究
論文名稱(外文):Study on the Microstructure and Performance of CIGS Solar Cell by Stacked Precursors and Selenization/Sulfurization Process
指導教授:朝春光吳樸偉
指導教授(外文):Chao, Chuen–GuangWu, Pu-Wei
口試委員:薄慧雲許春耀曹中丞朝春光吳樸偉
口試委員(外文):Bao, Hui-YunHsu, Chun-YaoCao, Jhong-ChengChao, Chuen–GuangWu, Pu-Wei
口試日期:2019-04-01
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:99
中文關鍵詞:CIGS 太陽能電池CIGSS 太陽能電池前驅物溅鍍硒化硫化CdS 緩衝層後退火
外文關鍵詞:CIGS solar cellCIGSS solar cellprecursor sputteringselenizationsulfurizationannealing CdS buffer layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:54
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以二階段前驅物溅鍍及無毒性硒化方式製備 CIGS太陽能電池。前驅物金屬層分別是以 Cu0.7Ga0.3 和 In 靶交替堆疊,其中 In (220 nm)/CuGa (150~300 nm)/In (450 nm)金屬層是以直流溅鍍方式鍍製於含 Mo 的鈉玻璃基板上,隨後並以蒸鍍方式製備 Se 層完成前驅物。完成的前驅物經過三階段硒化熱處理並在退火最高溫持溫 20 分鐘後,將 CIGS 吸收層化學計量比控制在 Cu/Im+Ga 與 Ga/In+Ga 分別為 0.93 及 0.34。從 XRD 分析中發現,在 280℃左右 CIGS 三支獨立的繞射峰(112),(220/204),(312/116)開始出現並且強度隨著溫度增加而增強直到 550℃,而硒化的持溫退火時間從 10 分鐘增長至 20 分鐘,會讓 CIGS 吸收層表面更平坦、緻密,晶粒也變更大。拉曼光譜分析中顯示主峰174cm-1與兩支較弱的分峰(212 與 231cm-1
),這樣的 CIGS 太陽電池電池元件經過適當的硒化處理後,元件最高效率達12.58%。
而經 500℃低溫硫化後,CIGSS 表面結構不僅更平整也更緻密,XRD 分析發現到會多一支 CIGSS 繞射峰並往右邊偏移,主要是因為 S 原子半徑較 Se 原子半徑小,使得 S 原子更容易產生取代的效果,當 d 變小θ值就會變大,繞射峰就會往右邊偏移,同時能隙從未硫化的 1.19eV 增加至 1.34eV(500℃,10 分鐘)。SISM 分析也顯示 S 原子擴散在 CIGS 表層深度約有 250nm。經過 500℃且 5 分鐘持溫的 CIGSS 元件樣品效率可增加至13.30%。
為了獲得更高效率的元件,透過後退火的方式調整 CIGS 吸收層與 CdS 表面的結構關係,CdS 能隙不僅會隨退火溫度增加而增加,經退火後的 CdS 表層結晶會比未退火的 CdS 來得更小且平整,另外發現到退火後的 CdS 膜厚會有變薄的現象,這現象與 XPS 分析結果一致,推測 CdS 會透過擴散方式進入到CIGS 形成更好的 P-N 介面特性,將 CdS/CIGS 空乏區介面擴大並更靠近 CIGS 以減少複合載子缺陷產生,而這樣的結果也可以看到在 300℃的退火溫度,元件效率約可增加 3.12 到 4.71%。
In this research, Cu (In, Ga)Se2 (CIGS) films were fabricated using a two-step precursors sputtering and selenization process. Precursors stacked with In (220 nm)/CuGa (150~300 nm)/In (450 nm) layers are deposited onto Mo bilayer soda-lime glass by sputtering, using Cu0.7Ga0.3 and In targets, followed by vapor stacking of the elemental Se layers.Using three sequential stages for the selenization process, with an annealing time of 20 min, the stoichiometry of the CIGS absorbers with
the Cu/(In+Ga) and Ga/(In+Ga) controlled at atomic ratios of 0.93 and 0.34, respectively. From XRD analysis, three independent CIGS (112),CIGS (220/204) and CIGS (312/116) occurred crystallization at ~280oC and phase peaks intensity reinforced until 550oC. With the increased
selenization annealing time from 10 min to 20 min, the CIGS absorbers were evidently dense and relatively smooth, and the CIGS grains size became larger. Raman spectra of CIGS absorbers revealed a main peak (174 cm-1
) and two weak signals (212 and 231 cm-1). The performance of CIGS solar cell device prepared with proper selenization, a maximum efficiency of 12.45% was obtained.Through sulfurization, CIGSS surface structure become smooth and densely. From XRD analysis, the peak (112) of CIGSS films shifts after sulfurization. Because S has a smaller atomic radius, so it is easily substituted for Se. The band gap energy was increased from 1.19 eV (for the as-grown) to 1.34 eV (for the absorber layer that is sulfurized at 500oC for 10 min). SISM analysis also showed that the S atoms diffuse into the CIGS surface region to a depth of approximately 250nm. At 500℃,5 min holding time, the best efficiency of CIGSS solar cell device increased to 13.30%.
In order to get higher efficiency of solar cell, through annealing process to modify the interface of CIGS absorber layer with CdS buffer layer. The band gap of CdS thin film was increased from 2.51eV (unannealing) to 2.35eV (350℃ annealing) through by the annealing
temperature 150、200、250、300、350℃. The surface grains of CdS layer for annealing process were smaller and smoother than un-annealing process. Besides, the thickness of CdS buffer layer was decreasing after annealing process, we inferenced that the CdS diffuse into CIGS layer correspond to XPS analysis. The benefit was the depletion zone of the interface of CdS/CIGS layer move into CIGS layer to avoid trapping at the more defect interface. Hence, the carriers were collected more easier
to gain efficiency more than 3.12~4.71% at 300℃ annealing temperature.
Chapter 1 Introduction……………………………………1
1.1 General Background…………………………………………1
1.2 Organization of Dissertation…………………………………4
References……………………………………………………6
Chapter 2 Literature Review……………………………8
2.1 Development of CIGS solar cell………………………………..8
2.2 Co-evaporation process…………………………………………9
2.3 Sputtering & Selenization process……………………………10
References……………………………………………….……21
Chapter 3 Effect of Selenization Processes on
CIGS Solar cell Performance………………………….30
3.1 Introduction……………………………………………………30
3.2 Experiment Procedures…………………………………………32
3.3 Results and Discussion…………………………………………34
3.4 Summary and Conclusions……………………………………..42
References………………………………………………………44
Chapter 4 Growth and Characterization of High
Quality CIGS Films Using Novel Precursors Stacked
and Surface Sulfurization Process………………………54
4.1 Introduction……………………………………………………..54
4.2 Experiment Procedures…………………………………………57
4.3 Results and Discussion…………………………………………59
4.4 Summary and Conclusions……………………………………..69
References………………………………………………………71
Chapter 5 Influence of CIGS Solar Cell by the
Diffusion Depth of CdS Layer……………………….…82
5.1 Introduction……………………………………………….……82
5.2 Experiment Procedures…………………………………….…..83
5.3 Results and Discussion………………………………………....85
5.4 Summary and Conclusions……………………………………..87
References………………………………………………………88
Chapter 6 Summary and Conclusions……………….95
List of Publications………………………………………….98
Chapter 1
[1] J. R. Tuttle, et al., "High Efficiency thin- film Cu(InGa)Se2-Based Photovoltaic Devices", Proc. 23th IEEE Photovoltaic Solar Energy Conf., pp. 415421,1993.
[2]H. W. Schock, Proc. International Symposium on Polycrystalline Semiconductors and Grain Boundaries, 1989, pp. 2461.
[3]G. A. Landis and A. F. Hepp, Proc. European Space Power Cont. Florence, 1991,99. 517.
[4] Jiyon Song , Sheng S. Li, Solid-State Electronics 48 (2004) 73–79.
[5] N. Romeo, et al., "CulnSe2/CdS thin film solar cells by RF sputtering", Proc. 7th
E.C. Photovoltaic Solar Energy Conf., pp. 656461, 1986.
[6] M. Nishi& el al, "Photovoltaic properties of Cu(In,Ga)S& thin film solar cell fabricated by co-evaporation process", Proc. 1st World Cod. On Photovoltaic Energy, pp 222-225, 1994.
[7] P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, Phys. Status Solidi Rapid Res. Lett. doi:10.1002/pssr.201409040
[8] F. Karg, Energy Procedia 15, 275 (2012)
[9] Sung Hyun Chun, Yong Hun Kwon, Hyung Koun Cho, J Mater Sci: Mater Electron (2014) 25:3492–3497
[10] H. Park, S.C. Kim, S. Lee, J. Koo, S.H. Lee, C. Jeon, S. Yoon, W.K. Kim, Thin Solid Films 519, 7245 (2011)
[11] S. Merdes, R. Mainz, H. Rodriguez-Alvarez, J. Klaer, R. Klenk, A. Meeder, H.W. Schock, MCh. Lux-Steiner, Thin Solid Films 519, 7189 (2011)
[12] Hyeonwook Park , Sung Cheol Kim , Sang-Hwan Lee, Thin Solid Films 519(2011) 7245–7249
[13] Jun Liu , Ai Xiang Wei , J Mater Sci: Mater Electron (2013) 24:2553–2557
[14] S. Merdes, R. Mainz, Thin Solid Films 519 (2011) 7189–7192
[15] R. Mainz, R. Klenk, M.Ch. Lux-Steiner, Thin Solid Films 515 (2007) 5934.
Chapter 2
[1] N. Romeo, et al., "CulnSe2/CdS thin film solar cells by RF sputtering", Proc.7th E.C. Photovoltaic Solar Energy Conf., pp. 656461,1986.
[2] M. Nishi & el al, "Photovoltaic properties of Cu(In,Ga)S & thin film solar cell fabricated by Coevaporation process", Proc. 1st World Cod. on Photovoltaic Energy, pp 222-225,1994.
[3] S. J. Xu, X. C. Wang and S. J. Chua," Effects of rapid thermal annealing on structure and luminescence of selfassembled InAs/GaAs quantum dots", Appl. Phys. Let, vol.72, pp.3335-3337, 1998.
[4] W. K. Loke, S. F. Yoon, S. Z. Wang, T. K. Ng and W. J. Fan," Rapid thermal annealing of GaNxAsUIX grown by radio-frequency plasma assisted molecular beam epitaxy and its effect on photoluminescence", J. Appl. Phys, vo1.91, pp.4 900-4 903,2002.
[3] S.K. Kim, J.C. Lee, et al, "The Photovoltaic properties depending on growth temperature of Cu(In,Ga)Se2 absorber layer", 3rd World Conf. on Photovoltaic Energy Conversion, May 11-18 2003,Osaka,Japan.
[4] P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, Phys. Status Solidi Rapid Res. Lett. doi:10.1002/pssr.201409040
[5] F. Karg, Energy Procedia 15, 275 (2012)
[6] Sung Hyun Chun, Yong Hun Kwon, Hyung Koun Cho, "Non-toxic selenization using thermal annealing for CuGa/In bi-layer precursors deposited by sputtering", J Mater Sci: Mater Electron (2014) 25:3492–3497
[7] H. Park, S.C. Kim, S. Lee, J. Koo, S.H. Lee, C. Jeon, S. Yoon, W.K. Kim, Thin Solid Films 519, 7245 (2011)
[8] S. Merdes, R. Mainz, H. Rodriguez-Alvarez, J. Klaer, R. Klenk, A. Meeder, H.W. Schock, MCh. Lux-Steiner, Thin Solid Films 519, 7189 (2011)
[9] X. Wang, S.S. Li, W.K. Kim, S. Yoon, V. Craciun, J.M. Howard, S. Easwaran, O. Manasreh, O.D. Crisalle, T.J. Anderson, Sol. Energy Mater. Sol. Cells 90, 2855
(2006)
[10] J. Horzela, C. Allebe, J. Szlufcik, S. Sivoththaman, Sol. Energy Mater. Sol. Cells 72, 263 (2002)
[11] G.M. Hanket, W.N. Shafarman, B.E. McCandless, R.W. Birkmire, J. Appl. Phys. 102, 074922 (2007)
[12] M.A. Contreras, L. Mansfield, B. Egaas, J. Li, M. Romero, R.Noufi, in 37th IEEE Photovoltaic Specialists Conference (PVSC 37), Seattle, Washington (2011)
[13] J.J. Scragg, Studies of Cu2ZnSnS4 Films Prepared by Sulfurisation of Electrodeposited Precursors, Thesis (Doctor of Philosophy (PhD), University of Bath (2010)
[14] K. Gartsman, L. Chernyak, V. Lyahovitskaya, D. Cahen, V. Didik, V. Kozlovsky, R. Malkovich, E. Skoryatina, V. Usacheva, J. Appl. Phys. 82, 4282
(1997)
[15] M. Marudachalam, R.W. Birkmire, H. Hichri, J.M. Schultz, A. Swartzlander, M.M. Al-Jassim, J. Appl. Phys. 82, 2896 (1997)
[16] S.Y. Hsiao, P.C. Yang, H.C. Ni, K.Y. Yen, C.H. Chiu, P.S. Lin, H.J. Chen, C.H. Wu, S.C. Liang, G.Y. Ni, J. Electrochem. Soc. 159, H378 (2012)
[17] Jun Liu, Ai Xiang Wei, Yu Zhao ,Zhi Qiang Yan, J Mater Sci: Mater Electron (2013) 24:2553–2557
[18] J.R. Tuttle, M. Contreras, M.H. Bode, D. Niles, D.S. Albin, R. Matson, A.M. Gabor, A. Tennant, A. Duda, R. Noufi, J. Appl. Phys. 77, 153 (1995)
[19] R. Klenk,T.Walter,H.W.Schock, D. Cahen, Adv.Mater. 5, 114 (2004)
[20] S.B. Zhang, S.H. Wei, A. Zunger, H. Katayama-Yoshida, Phys. Rev. B 57, 9642 (1998)
[21] Kai Siemer*, Jo Klaer, Ilka Luck, JuK rgen Bruns, Reiner Klenk, Dieter BraKunig, Solar Energy Materials & Solar Cells 67 (2001) 159}166
Chapter 3
[1]. E. Singh and H. S. Nalwa, J. Nanosci. Nanotechnol. 15, 6237 (2015).
[2]. J. Niu, D. Yang, X. Ren, Z. Yang, Y. Liu, X. Zhu, W. Zhao, and S. Liu, Org. Electron. 48, 165 (2017).
[3]. E. Singh and H. S. Nalwa, RSC Adv. 5, 73575 (2015).
[4]. E. Singh, K. S. Kim, G. Y. Yeom, and H. S. Nalwa, ACS Appl. Mater. Interfaces 9, 3223 (2017).
[5]. H. H. Sung, D. C. Tsai, Z. C. Chang, B. H. Kuo, Y. C. Lin, T. J. Lin, S. C. Liang, and F. S. Shieu, Surf. Coat. Technol. 259, 335(2014).
[6]. Z. H. Li, E. S. Cho, and S. J. Kwon, Thin Solid Films 547, 156(2013).
[7]. K. H. Liao, C. Y. Su, Y. T. Ding, and H. S. Koo, Appl. Surf. Sci.270, 139 (2013).
[8]. J. Kim, H. S. Lee, and N. M. Park, Curr. Appl. Phys. 14, S63 (2014).
[9]. R. N. Bhattacharya, M. K. Oh, and Y. Kim, Sol. Energy Mater. Sol.Cells 98, 198 (2012).
[10]. J. Han, C. Liao, T. Jiang, H. Xie, K. Zhao, and M. P. Besland,J. Cryst. Growth 382, 56 (2013).
[11]. V. Alberts, S. Zweigart, and H. W. Schock, Semicond. Sci. Technol. 12, 217 (1997).
[12]. J. Koo, S. Jeon, M. Oh, H. Cho, C. Son, and W. K. Kim, Thin Solid Films 535, 148 (2013).
[13]. J. Liu, D. M. Zhuang, M. J. Cao, X. L. Li, M. Xie, and D. W. Xu, Vacuum 102, 26 (2014).
[14]. X. Huang, X. Miao, N. Yu, and X. Guan, Appl. Surf. Sci. 287, 257 (2013).
[15]. D. Lee, J. Y. Yang, Y. S. Kim, C. B. Mo, S. Park, B. J. Kim, D. Kim,J. Nam, and Y. Kang, Sol. Energy Mater. Sol. Cells 49, 195 (2016).
[16]. J. Chantana, D. Hironiwa, T. Watanabe, S. Teraji, K. Kawamura, and T. Minemoto, Sol. Energy Mater. Sol. Cells 133, 223 (2015).
[17]. S. H. Jung, R. Fan, W. I. Lee, and C. W. Chung, Thin Solid Films 547, 86 (2013).
[18]. S. S. Wang, C. Y. Hsu, F. J. Shiou, P. C. Huang, and D. C. Wen,J. Electron. Mater. 42, 71 (2013).
[19]. M. A. Contreras, M. J. Romero, and R. Noufi, Thin Solid Films 511–512, 51 (2006).
[20]. D. H. Kuo, Y. C. Tu, and M. Monsefi, Appl. Surf. Sci. 268, 22 (2013).
[21]. Z. H. Li, E. S. Cho, and S. J. Kwon, J. Cryst. Growth 387, 117 (2014).
[22]. T. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, and W. C. Chen, Solid-State Electron. 56, 175 (2011).
[23]. W. T. Lin, S. H. Chen, S. H. Chan, S. C. Hu, W. X. Peng, and Y. T.Lu, Vacuum 99, 1 (2014).
[24]. T. R. Bai, C. Q. Liu, N. Wang, S. M. Liu, H. L. Wang, W. W. Jiang, W. Y. Ding, W. D. Fei, and W. P. Chai, J. Alloys Compd. 646, 532 (2015).
[25]. J. A. García, E. Rudigier, N. Rega, B. Barcones, R. Scheer, A. P. Rodríguez, A. R. Rodríguez, and J. R. Morante, Thin Solid Films 431–432, 122 (2003).
[26]. K. H. Liao, C. Y. Su, Y. T. Ding, and C. T. Pan, Appl. Surf. Sci. 263, 476 (2012).
[27]. M. Batuk, M. Buffière, A. E. Zaghi, N. Lenaers, C. Verbist, S. Khelifi, J. Vleugels, M. Meuris, and J. Hadermann, Thin Solid Films 583, 142 (2015).
Chapter 4
[1]. L.R. Zhang, T. Li, Y.C. Chen, W. Pang, M.H. Qu, X.M. Song, Y.Z. Zhang, H.Yan,J. Mater. Sci.-Mater. Electron 29, 3482 (2018)
[2]. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W.Wischmann,M. Powalla, Prog. Photovolt: Res. Appl. 19, 894 (2011)
[3]. P. Zou, L. Wan, S.H. Pan, M.M. Meng, Z.Q. Guo, J.Z. Xu, J. Mater. Sci.-Mater. Electron 24, 4530 (2013)
[4]. Y.C. Lin, Z.Q. Lin C.H. Shen, L.Q. Wang, C.T. Ha, C. Peng, J. Mater. Sci.- Mater.Electron 23, 493 (2012)
[5]. H.T. Lu, C.Y. Ou, C.H. Lu, J. Mater. Sci.-Mater. Electron 29, 1614 (2018)
[6]. L. Sun, J.H. Ma, N.J. Yao, Z.M. Huang, J.H. Chu, J. Mater. Sci.-Mater. Electron 27,9124 (2016)
[7]. R. Scheer, T. Walter, H.W. Schock, M.L. Fearheiley, H.J. Lewerenz, Appl. Phys. Lett. 63, 3294 (1993)
[8]. J. Wang, J. Zhu, L.L. Liao, J. Mater. Sci.-Mater. Electron 25, 1863 (2014)
[9]. K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, D. BraKunig, Sol. Energy Mat. Sol.Cells 67, 159 (2001)
[10]. S.H. Chun, Y.H. Kwon, H.K. Cho, J. Mater. Sci.-Mater. Electron 25, 3492 (2014).
[11]. P.C. Huang, C.C. Sung, J.H. Chen, R.C. Hsiao, C.Y. Hsu, J. Mater. Sci.-Mater.Electron 29, 1444 (2018)
[12]. S.U. Park, R. Sharma, K. Ashok, S. Kang, J.K. Sim, C.R. Lee, J. Cryst. Growth 359, 1 (2012)
[13]. S. Kang, R. Sharma, J.K. Sim, C.R. Lee, J. Alloy. Compd. 563, 207 (2013)
[14]. H.R. Hsu, S.C. Hsu, Y.S. Liu, Appl. Phys. Lett. 100, 233903 (2012)
[15]. L.R. Zhang, L. Li, Y.C. Chen, W. Pang, M.H. Qu, X.M. Song, Y.Z. Zhang, H.
Yan, J. Mater. Sci.-Mater. Electron 29, 3482 (2018)
[16]. P.C. Huang, C.H. Huang, M.Y. Lin, C.Y Chou, C.Y. Hsu, C G. Kuo, Int. J. Photoenergy 2013, 1 (2013)
[17]. D.G. Moon, S. Ahn, J.H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H.D. Lee, H. Pak, S. Kwon, Sol. Energ. Mater. Sol. Cells 95, 2786 (2011)
[18]. Y. Cho, D.W. Kim, S. Ahn, D. Nam, H. Cheong, G.Y. Jeong, J. Gwak, J.H. Yun,Thin Solid Films 546, 358 (2013)
[19]. J. Liu A.X. Wei, Y. Zhao, Z.Q. Yan, J. Mater. Sci.-Mater. Electron. 24, 2553(2013)
[20]. G.Y. Kim, W. Jo, H.J. Jo, D.H. Kim, J.K. Kang, Curr. Appl. Phys. 15, S44(2015)
[21]. J. Han, J. Koo, H. Jung, W.K. Kim, J. Alloys Compd. 552, 131 (2013)
[22]. A.B. Marai, J.B. Belgacem, Z.B. Ayadi, K. Djessas, S. Alaya, J. Alloys Compd.
658, 961 (2016)
[23]. T. Sidali, A. Duchatelet, E. Chassaing, D. Lincot, Thin Solid Films 582, 69
(2015)
[24]. H.H. Sung, D.C. Tsai, Z.C. Chang, B.H. Kuo, Y.C. Lin, T.J. Lin, S.C. Liang, F.S.Shieu, Surf. Coat. Technol. 259, 335 (2014)
[25]. R. Caballero, C.A. Kaufmann, V. Efimova, T. Rissom, V. Hoffmann, H.W. Schock,Prog. Photovolt: Res. Appl. 21, 30 (2013)
[26]. Z. Yu, C. Yan, T. Huang, W. Huang, Y. Yan, Y. Zhang, L. Liu, Y. Zhang, Y.Zhao,Appl. Surf. Sci. 258, 5222 (2012)
[27]. D. Lee, J. Y. Yang, Y. S. Kim, C.B. Mo, S. Park, B. Kim, D. Kim, J. Nam, Y.Kang,Sol. Energ. Mater. Sol. Cells 149, 195 (2016)
[28]. J. Liu, D.M. Zhuang, M.J. Cao, X. L. Li, M. Xie, D.W. Xu, Vacuum 102, 26(2014)
[29]. J. Koo, S. Jeon, M. Oh, H. Cho, C. Son, W.K. Kim, Thin Solid Films 535, 148(2013)
[30]. U.P. Singh, W.N. Shafarman, R.W. Birkmire, Sol. Energ. Mater. Sol. Cells 90,623 (2006)
[31]. J.W. Jang, S.M. Lee, I.J. Choi, Y.S. Cho, J. Alloys Compd. 710, 177 (2017)
[32]. S.H. Lin, J.C. Sung, C.H. Lu, Thin Solid Films 616, 746 (2016)
[33]. V. Alberts, Semicond. Sci. Technol. 22, 585 (2007)
[34]. Y. Goushi, H. Hakuma, K. Tabuchi, S. Kijima, K. Kushiya, Sol. Energ. Mater.Sol.Cells 93, 1318 (2009)
[35]. H.T. Lu, C.Y. Yang, C.H. Lu, J. Mater. Sci.-Mater. Electron. 27, 10642 (2016)
[36]. T. Kobayashi, H. Yamaguchi, Z. J. L. Kao, H. Sugimoto, T. Kato, H. Hakuma,T.Nakada, Prog. Photovolt: Res. Appl. 23, 1367 (2015)
[37]. X. Liu, Z. Liu, F. Meng, M. Sugiyama, Sol. Energ. Mater. Sol. Cells 124, 227(2014)
[38]. Y. Xie, H. Chen, A. Li, X. Zhu, L. Zhang, M. Qin, Y. Wang, Y. Liu, F. Huang, J.Mater. Chem. A 2, 13237 (2014)
Chapter 5
[1]Savadogo, Solar Energy Materials and Solar Cells,52 (1998)361-388.
[2]H.Jmoller,”Semiconductors for Solar Cell “, Artech House ,Boston (1993).
[3]K.Omura, A.Hanahusa, T.A,H.Higuch,.etc, Matsuhita Battery Industrial Co., Ltd.,PV Research&Development Center Mastsushita–Cho-1, Moriguchi, Osaka, 570,Japan.
[4]S. Jung, S. Ahn, J. H. Yun, J. Gwak, D. Kim, and K. Yoon, "Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation
technique", Current Applied Physics, 2010. 10(4): p. 990-996.
[5] J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, T. P.Hsieh,"An investigation of CuInGaSe2 thin film solar cells by using CuInGa
precursor", Nanoscience and Nanotechnology Letters, 2016. 3(2): p. 200-203.
[6] I. Repins, M. Contreras, M, Romero, Y. Yan, W. Metzger, "Improved Efficiency of Cu(In,Ga)Se2 Thin Film Solar Cells with Chemically Deposited ZnS Buffer Layers by Air Annealing Formation of Homojunction by Solid Phase
Diffusion",33rd IEEE Photovoltaic Specialist Conference, 2008. p. 11-16.
[7] M. Elsharkawy, G. Kanda, M. Yakushev, E. Abdel-Hady, and D.Keeble,"Characterization of vacancy defects in Cu(In,Ga)Se2 by positron annihilation spectroscopy", AIP Advances, 2016. 6(12): p. 125031.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔