|
[1] T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-J. Chu, and S. M. Sze, “Resistance random access memory”, Mater. Today, 19, 254 (2016). [2] S. M. Sze, Physics of Semiconductor Devices, 3rd ed, Wiley, New York (2007). [3] R. Aluguri, and T.-Y. Tseng, “Overview of selector devices for 3-D stackable cross point RRAM arrays”, IEEE J. Electron Devices Soc., 4, 294 (2016). [4] L. Zhu, J. Zhou, Z. Guo, and Z. Sun, “An overview of materials issues in resistive random access memory”, J. Mater., 1, 285 (2015). [5] Y Fan., Characterization of porous BEOL dielectrics for resistive switching ECS Transactions, 72, 35, (2016). [6] S. Yu, Resistive Random Access Memory (RRAM): From Devices to Array Architectures, Morgan & Claypool, San Rafael, CA (2016). [7] S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, “Resistive switching characteristics of silicon nitride-based RRAM depending on top electrode metals”, IEICE Trans. Electron., E98-C, 5, 429, (2015). [8] X. Jiang, Z. Ma, J. Xu, K. Chen, L. Xu, W. Li, X. Huang, and D. Feng, “a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths”, Sci. Rep. 5, 15762, (2015). [9] G. Ghosh, “Dependence of Set, Reset and Breakdown Voltages of a MIM Resistive Memory Device on the input Voltage Waveform,” Master Thesis, Virginia Tech, Blacksburg, Virginia, USA (2015). [10] D. Kumar, R. Aluguri, U. Chand, and T.-Y. Tseng, “Enhancement of resistive switching properties in nitride based CBRAM device by inserting an Al2O3 thin layer”, Appl. Phys. Lett., 110, 203102, (2017). [11] D. Kumar, R. Aluguri, U. Chand, and T.-Y. Tseng, “Conductive bridge random access memory characteristics of SiCN based transparent device due to indium diffusion”, Nanotechnology, 29, 125202, (2018). [12] F. Koehler, T.H. Triyoso, I. Hussain, B. Antonioli, and K. Hempel, “Challenges in spacer process development for leading-edge high-k metal gate technology” Phys. Status Solidi C 11, 73 (2014). [13] R. H. E. C. Bosch, L. E. Cornelissen, H. C. M. Knoops, and W. M. M. Kessels,”Atomic Layer Deposition of Silicon Nitride from Bis(tertiary-butylamino)silane and N2 Plasma Studied by in Situ Gas Phase and Surface Infrared Spectroscopy,” Chem. Mater. 28, 5864 (2016). [14] W. Jang, H. Jeon, H. Song, H. Kim, and J. Park, “The effect of plasma power on the properties of low-temperature silicon nitride deposited by RPALD for a gate spacer,” Phys. Status Solidi A 212, 2785 (2015). [15] P. Xu and S. S. Rathi, “A Breakthrough in Low-k Barrier/Etch Stop Films for Copper Damascene Applications,” Semiconductor FABTECH, 11th Edition, 239, (2000). [16] S.-H.K. Park, J. Oh, C.-S. Hwang, J.-I. Lee, Y.S. Yang, and H.Y. Chu, “Ultrathin film encapsulation of an OLED by ALD,” Electrochem. Solid State Lett. 8, H21 (2005). [17] S. R. A. Ahmeda, S. Naitob, and K. Kobayashi, “Characterization of Low-Dielectric Constant Silicon Carbonitride (SiCN) Dielectric Films for Charge Trapping Nonvolatile Memories,” ECS Transactions, 69, 99 (2015) [18] Y. Fan, S. King, J. Bielefeld, and M. Orlowski, “Characterization of Porous BEOL Dielectrics for Resistive Switching,” ECS Trans. 72, 35 (2016). [19] E.P. Gusev, C. Cabral Jr., M. Copel, C. D’Emic, and M. Gribelyuk, “Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications,” Microelectronic Engineering 69, 145 (2003). [20] R. A. Ovanesyan, N. Leick, K. M. Kelchner, D. M. Hausmann, and S. Agarwal, “Atomic Layer Deposition of SiCxNy Using Si2Cl6 and CH3NH2 Plasma,” Chem. Mater., 29, 6269, (2017). [21] J. W. Klaus, A. W. Ott, A. C. Dillon, and S. M. George, “Atomic layer controlled growth of Si3N4 films using sequential surface reactions,” Surf. Sci. 418, L14 (1998). [22] R. A. Ovanesyan, D. M. Hausmann, and S. Agarwal, “Low Temperature Conformal Atomic Layer Deposition of SiNx Films Using Si2Cl6 and NH3 Plasma,” ACS Appl. Mater. Interfaces 7, 10806 (2015). [23] H. Kim, H. Song, C. Shin, K. Kim, W. Jang, H. Kim, S. Shin, and H. Jeon, “Dielectric barrier characteristics of Si-rich silicon nitride films deposited by plasma enhanced atomic layer deposition,” J. Vac. Sci. Technol. A, 35, 01A101 (2017). [24] S. Weeks, G. Nowling, N. Fuchigami, M. Bowes, and K. Littau, “Plasma enhanced atomic layer deposition of silicon nitride using neopentasilane,” J. Vac. Sci. Technol. A, 34, 01A140 (2016). [25] Park, J.-M.; Jang, S. J.; Yusup, L. L.; Lee, W.-J.; Lee, and S.-I, “Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride Using a Novel Silylamine Precursor,” ACS Appl. Mater. Interfaces, 8, 20865 (2016) [26] H. C. M. Knoops, K. de Peuter, and W. M. M.Kessels, “Redeposition in plasma-assisted atomic layer deposition: Silicon nitride film quality ruled by the gas residence time,” Appl. Phys. Lett., 107, 014102 (2015). [27] A. M. Andringa, A. Perrotta, K. de Peuter, H. C. M. Knoops, W. M. M. Kessels, and M. Creatore,” Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers,” ACS Appl. Mater. Interfaces 7, 22525 (2015). [28] S. Suh, S. W. Ryu, S. Cho, J.-R. Kim, S. Kim, C.S. Hwang, and H.J. Kim, “Low-temperature SiON films deposited by plasma enhanced atomic layer deposition method using activated silicon precursor. J. Vac. Sci. Technol., A 34, 01A136 (2016). [29] T. Suntola, J. Antson, A. Pakkala, and S. Lindfors, “Atomic layer epitaxy for producing EL thin films,” in SID International Symposium in San Diego, CA, Digest of Technical Papers (1977) [30] L. G. Gosset, J.-F. Damlencourt, O. Renault, D. Rouchon, Ph. Holliger, A. Ermolieff, I. Trimaille, J.-J. Ganem, F. Martin, and M.-N. Séméria, J. Non-Cryst. Solids 303, 17 (2002). [31] M. De Keijser and C. Van Opdorp, “Atomic layer epitaxy of gallium arsenide with the use of atomic hydrogen” Appl. Phys. Lett., 58, 1187 (1991) [32] A. M. Andringa, A. Perrotta, K. DePeuter, H. C. M. Knoops, W. M. M. Kessels, and M. Creatore, “Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers,” ACS Appl. Mater. Interfaces, 7, 10806–13 (2015) [33] W. Jang, H. Jeon, C. Kang, H. Song, J. Park, H. Kim, H. Seo, M. Leskela, and H. Jeon, “Temperature dependence of silicon nitride deposited by remote plasma atomic layer deposition,” Phys. Status Solidi. A211, 2166 (2014). [34] S. W. King, “Plasma enhanced atomic layer deposition of SiNx:H and SiO2,” J. Vac. Sci. Technol., A 29, 041501 (2011). [35] X, Meng, Y.-C. Byun, H. S. Kim, J. S. Lee, A. T. Lucero, L. Cheng, and J. Kim, “Atomic Layer Deposition of Silicon Nitride Thin Films: A Review of Recent Progress, Challenges, and Outlooks,” Materials 9, 1007 (2016) [36] C. S. Hwang, Atomic Layer Deposition for Semiconductors, Springer US, New York (2014). [37] Xie, Yuan. Emerging Memory Technologies, Springer, New York (2014). [38] T. Faraz, F. Roozeboom, H. C. M. Knoops, and W. M. M. Kessels, “Atomic Layer Etching: What Can We Learn from Atomic Layer Deposition?”, ECS J. Solid State Sci. Technol., 4, (2015). [39] H.-E. Tu, C.-J. Su, U.-S. Jeng, and J. Leu, “Effect of Porogen Incorporation on Pore Morphology of Low-k SiCxNy Films Prepared Using PECVD”, ECS J. Solid State Sci. Technol., 4, (2014) [40] H.-E.Tu, Y.-H.Chen, and J. Leu, “Low-k SiCxNy Films Prepared by Plasma-Enhanced Chemical Vapor Deposition Using 1,3,5-trimethyl-1,3,5-trivinylcyclotrisilazane Precursor,” J. Electrochem. Soc., 159, G56, (2012). [41] V. L. Nguyen, E. Zera, A. Perolo, R. Campostrini, W. Li, and G. D.Sorarù, “Synthesis and characterization of polymer-derived SiCN aerogel,” J. Eur. Ceram. Soc., 35 (2015) [42] R. DiMundo, F. Palumbo, F. Fracassi, and R. D’Agostino, “Thin film deposition in capacitively coupled plasmas fed with bis(dimethylamino)-dimethylsilane and oxygen: An FTIR study,” Plasma Process. Polym, 6, 506 (2009) [43] H. Shimizu, N. Tajima, T. Kada, S. Nagano, and Y. Shimogaki, “Novel Precursors for SiCH Low-k Caps beyond the 22 nm Node: Reactions of Silacyclopentane Precursors in the Plasma-Enhanced Chemical Vapor Deposition Process and Structural Analyses of SiCH Films,” Jpn. J. Appl. Phys., 50, 08KA01 (2011). [44] H. Shimizu, N. Tajima, T. Kada, S. Nagano, Y. Ohashi, and S. Hasaka, “Novel Precursor for Development of Si–C 2 H 4 –Si Networks in SiCH for Application as a Low- k Cap Layer beyond 22 nm Nodes,” Jpn. J. Appl. Phys., 49, 05FF02 (2010). [45] J. Lubguban, T. Rajagopalan, N. Mehta, B. Lahlouh, S. L. Simon, and S. Gangopadhyay, “Low-k organosilicate films prepared by tetravinyltetramethylcyclotetrasiloxane,” J. Appl. Phys., 92, 1033 (2002). [46] A. M. Wrobel, I. Blaszczyk-Lezak, P. Uznanski, and B. Glebocki, “Remote hydrogen microwave plasma chemical vapor deposition of amorphous silicon carbonitride (a-SiCN) coatings derived from Tris(dimethylamino)silane,” Plasma Process. Polym., 8, 542 (2011). [47] Gerhard Muller, Thomas Happ, Michael Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi, “Status and Outlook of Emerging Nonvolatile Memory Technologies”, IEDM, Tech. Dig., 567 (2004) [48] R.E. Jones, Jr, P.D. Maniar, R. Moazzami, P. Zurcher, J.Z. Witowski, Y.T. Lii b, P. Chu and S.J. Gillespie, “Ferroelectric non-volatile memories for low-voltage, low-power applications”, Thin Solid Films 270, 584 (1995). [49] A Sawa, “Resistive switching in transition metal oxides”, Material today., 11, 28 (2008). [50] H. Kobayashi, T. Mizokuro, Y. Nakato, K. Yoneda, and Y. Todokoro, “Nitridation of silicon oxide layers by nitrogen plasma generated by low energy electron impact,” Appl. Phys. Lett., 71, 1978 (1997). [51] C. K.Ande, H. C. M.Knoops, K.dePeuter, M.vanDrunen, S. D.Elliott, and W. M. M.Kessels, “Role of Surface Termination in Atomic Layer Deposition of Silicon Nitride,” J. Phys. Chem. Lett., 6, 3610 (2015). [52] A. Sawa, T. Fujii, M. Kawasaki and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface”, Appl. Phys. Lett., 85, 4073 (2004) [53] S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films”, Appl. Phys. Lett., 76, 2749 (2000) [54] S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh,1 J. S. Lee,B. Kahng, J. H. Jang, M. Y. Kim, D.-W. Kim, and C. U. Jung,” Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors”, 92, 183507 (2008) [55] Yu Chao Yang, Feng Pan, Qi Liu, Ming Liu, and Fei Zeng,” Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application”, Nano Lett., 9, 1636 (2009) [56] Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, and A. Beckc, “Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals”, Appl. Phys. Lett., 78, 3738 (2001). [57] Dooho Choi, Dongsoo Lee, Hyunjun Sim, Man Chang, and Hyunsang Hwang, “Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications”, Appl. Phys. Lett. 88, 082904 (2006) [58] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer,” Reproducible switching effect in thin oxide films for memory applications”, Appl. Phys. Lett., 77, 3 (2000) [59] C. C. Lin, B. C. Tu, C. C. Lin, C. H. Lin, and T. Y. Tseng, “Resistive Switching Mechanisms of V-Doped SrZrO3 Memory Films”, IEEE Electron Device Lett. 27, 725 (2006). [60] S. Seo, and M. J. Lee, “Reproducible resistance switching in polycrystalline NiO films”, Appl. Phys. Lett., 85, 5655 (2004) [61] W. Y. Chang, and Y. C. Lai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications”, Appl. Phys. Lett. 92, 022110, (2008) [62] Weihua Guan, and Shibing Long, “Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide”, Appl. Phys. Lett. 91, 062111, (2007) [63] C. P. Hsiung, and J. Y. Gan, “Resistance Switching Characteristics of TiO2 Thin Films Prepared with Reactive Sputtering”, Electrochemical and Solid-State Letters, 12, G31 (2009) [64] M. Y. Chan, T. Zhang, V. Ho, and P. S. Lee, “Resistive switching effects of HfO2 high-k dielectric”, Microelectron. Eng. 85, 2420 (2008). [65] K. C. Liu, W. H. Tzeng, K. M. Chang, Y. C. Chan, C. C. Kuo, and C.W. Cheng, “The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device”, Microelectron. Reliab. 50, 670 (2010). [66] M. Fujimoto, and H. Koyama, “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching”, Appl. Phys. Lett., 89, 223509, (2006) [67] M. J. Rozenberg, and I. H. Inoue, “Nonvolatile memory with Multilevel Switching: A Basic Model”, Phys. Rev. Lett. 92, 178302 (2004). [68] Daniele Ielmini, and Yuegang Zhang,” Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices”, Journal of Applied Physics 102, 054517, (2007) [69] N. Fainer, Y. Rumyantsev, M. Kosinova, E. Maximovski, V. Kesler, V. Kirienko, and F. Kuznetsov, Surf. Coat. Technol., 201, 9269 (2007). [70] A. M. Wrobel, I. Blaszczyk-Lezak, A. Walkiewicz-Pietrzykowska, T. Aoki, and J. Kulpinski, J. Electrochem. Soc., 155, K66 (2008). [71] E. Vassallo, A. Cremona, F. Ghezzi, F. Dellera, L. Laguardia, G. Ambrosone, and U. Coscia, Appl. Surf. Sci., 252, 7993 (2006) [72] J. Lubguban, T. Rajagopalan, N. Mehta, B. Lahlouh, S. L. Simon, and S. Gangopadhyay, J. Appl. Phys., 92, 1033 (2002) [73] A. M. Coclite, G. Ozaydin-Ince, F. Palumbo, A. Milella, and K. K. Gleason, Plasma Process. Polym., 7, 561 (2010) [74] Z. Chen, K. Prasad, C. Y. Li, S. S. Su, D. Gui, P. W. Lu, X. He, and S. Balakumar, Thin Solid Films, 462, 223 (2004) [75] Y. Taki, T. Kitagawa, and Osamu Takai, Thin Solid Films, 304, 183 (1997)
|