跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許玉霖
研究生(外文):Hsu, Yu-Lin
論文名稱:以矽氮烷前騶物利用電漿輔助原子層沉積之碳氮化矽薄膜與其電阻轉態行為
論文名稱(外文):PEALD Silicon Carbonitride Films using a Silazane Precursor and Its Resistive Switching Behavior
指導教授:呂志鵬呂志鵬引用關係
指導教授(外文):Lue, Jih-perng
口試委員:張立潘扶民曾俊元
口試委員(外文):Chang, LiPan, Fu-MingTseng, Tseung-yuen
口試日期:2019-04-16
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:154
中文關鍵詞:碳氮化矽薄膜電阻轉態選擇器矽氮烷組成含量電漿輔助原子層沉積法薄膜密度折射率
外文關鍵詞:silicon carbonitride (SiCxNy)Resistive switchingselectorsilazane precursorPEALDfilm densityrefractive indexcomposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於採用電漿輔助化學氣相沉積(PECVD)之碳氮化矽薄膜方法開發的碳氮化矽的是極具潛力的電阻式記憶體(ReRAM) 候選。然而,由於PECVD方法難以沉積conformal 的薄膜在三維結構的電阻式記憶體。因此,為了開發適合應用於三圍結構電阻式記憶體必須開發適當的電漿輔助原子層沉積之碳氮化矽(PEALD)薄膜 並研究其電阻轉態行為。
在本論文中,使用矽氮烷前驅物,1,3,5-三甲基-1,3,5-三乙烯基環三矽氮烷(VSZ),通過PEALD用氮氣電漿在150-300℃下製備碳氮化矽膜。特別是,我們希望使用具有環狀Si-N-Si和3個乙烯基的矽氮烷前驅物來保持PEALD薄膜含有較高的碳含量。除此之外,本論文亦研究對基板表面之前處理,並控制電漿特性(功率,劑量)開發出新的電漿輔助原子層沉積方法。並同時研究了碳氮化矽薄膜的物理性質和化學結構。 電漿輔助原子層沉積之碳氮化矽薄膜顯示出更密集的Si-N結構,且沒有CHx鍵,Si-H鍵和CN-H帶,使得薄膜上產生高於電漿輔助化學氣相沉積之碳氮化矽薄膜的折射率和密度(1.81-1.94g / cm3)。
接下來為了研究電阻轉換行為,將SiCxNy薄膜製備在鋁的頂部和底部電極中。並在I-V測量中,30W 200℃製備的SiCxNy薄膜展示了雙極電阻開關特性而且不需要forming。50W 200℃製備的SiCxNy薄膜則呈現單極性選擇器的特性。因此以矽氮烷前騶物利用電漿輔助原子層沉積之碳氮化矽薄膜製備的元件展示出記憶體與選擇器的兩種功能有助於電路編程設計以及減少三圍結構的電阻式記憶體漏電流問題。,為製造三維結構非揮發性記憶體應用提供了途徑。
Plasma-enhanced chemical vapor deposited (PECVD) N-rich silicon carbonitride (SiCxNy) thin-films have been demonstrated as a promising candidate for resistive random-access memory (ReRAM) candidate owing to the conductive bridge random access memory (CBRAM). However, the PECVD method is not conformal and is difficult to meet the requirements of 3D ReRAM. It is, therefore, imperative to develop conformal SiCxNy film for 3D ReRAM structure using deposition technique such as atomic-layer-deposition (ALD). In this work, SiCxNy films were prepared by PEALD with N2 plasma at 150 to 300℃, using a silazane precursor, 1, 3, 5-trimethyl-1, 3, 5- trivinylcyclotrisilazane (VSZ), which contains cyclic Si-N-Si and 3 vinyl groups in hope to enhance carbon incorporation in the film.
Various surface treatments of native oxide/Si substrate were first explored to ensure linear ALD growth. The effects of plasma characteristics (power, dose) and deposition temperature on the ALD growth and the chemical structure and properties such as refractive index, density, and composition of SiCxNy films were studied. PEALD SiCxNy films show higher film density (1.81-1.94 g/cm3) and refractive index (1.62-1.67) than PECVD SiCxNy films, due to a denser Si-N structure and free of dangling bonds such as -CHx, -Si-H, and -CN-H bonds. PEALD SiCxNy films deposited at 200 ℃ illustrate excellent smoothness and layer-like stacking as verified by XRR and GISAXS.
To investigate resistive switching behavior, SiCxNy films were sandwiched by the top and bottom electrodes of aluminum. The SiCxNy cell demonstrates a bipolar resistive switching characteristic without forming and the unipolar selector performance, yet there is room for improvement in the durability. SiCxNy film (200℃, 30W) perform memory behavior and survive 37 cycles. Moreover, SiCxNy film (200℃, 50W) yield selector behavior with a 104 on/off ratio. PEALD SiCxNy films in this work demonstrate the feasibility to be used as memory and selector giving the pathway for the fabrication of 3D structure non-volatile memory application.
摘要 I
Abstract III
Acknowledgements V
Contents VI
Table captions IX
Figure captions X
Chapter 1 Introduction 15
1.1 Background 15
1.2 Overview 19
Chapter 2 Literature Review 20
2.1 Introduction of ALD technology 20
2.1.1 Plasma enhanced atomic layer deposition 21
2.2 Atomic Layer Deposition of Silicon Carbonitride 22
2.3 Emerging memory 24
2.3.1 Ferroelectric Random Access Memory (FeRAM) 26
2.3.2 Magnetoresistive Random Access Memory (MRAM) 26
2.3.3 Phase Change Memory (PCM) 27
2.3.4 Resistive Random Access Memory (ReRAM) 29
2.4 ReRAM options 30
2.4.1 Oxygen Migration 30
2.4.2 Oxygen vacancy migration 32
2.4.3 Metal filament 34
2.5 The switching mechanism of ReRAM 34
2.5.1 Filamentary model 35
2.5.1.1 Joule heating effect 36
2.5.1.2 Redox reaction 37
2.6 Carrier conduction mechanisms in ReRAM 38
2.6.1 Ohmic conduction 39
2.6.2 Schokkty emission 40
2.6.3 Poole-Frenkel emission 40
2.6.4 Tunneling conduction 41
2.6.5 Space charge limited current 43
2.6.6 Hopping conduction 44
Chapter 3 Experimental 69
3.1 Preparation of SiCxNy thin films 69
3.1.1 Precursor materials-1,3,5-trimethyl-1,3,5-trivinylcyclo-trisilazane (VSZ) 69
3.1.2 PEALD SiCxNy thin-films 70
3.2 Characterization of SiCxNy thin-films 70
3.2.1 Chemical characteristics 70
3.2.2 Film thickness measurement 71
3.2.3 Electrical characteristics 71
3.2.4 X-ray Reflectivity (XRR) 72
3.2.5 Gracing Incidence Small Angle X-ray Scattering (GISAXS) 72
Chapter 4 Results and discussion 78
4.1 PEALD of SiCxNy films 78
4.1.1 Effect of substrate pretreatment 78
4.1.2 PEALD Reaction Conditions- standard recipes for PEALD process 81
4.2 Chemical and Structural characterization of SiCxNy films 83
4.2.1 Infrared and XPS analyses of SiCxNy Films 83
4.2.2 Properties of SiCxNy films 87
4.2.3 Structure and morphology characterization 89
4.2.3 Summary 90
4.3 Study of the Resistive Switching of SiCxNy films 91
4.3.1 PEALD of SiCxNy films 91
4.4 Analyses of carrier transport mechanism of SiCxNy based ReRAM 94
4.4.1 Current-Voltage curve for fitting 94
4.4.2 Discussion for carrier transport mechanism 96
4.4.3 Interpretation of fitting results 97
4.4.4 Schottky barrier height and switch thickness 98
4.4.5 Set process 99
4.4.6 Reset process 101
4.4.7 Summary 102
Chapter 5 Conclusions 144
References 146

[1] T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-J. Chu, and S. M. Sze, “Resistance random access memory”, Mater. Today, 19, 254 (2016).
[2] S. M. Sze, Physics of Semiconductor Devices, 3rd ed, Wiley, New York (2007).
[3] R. Aluguri, and T.-Y. Tseng, “Overview of selector devices for 3-D stackable cross point RRAM arrays”, IEEE J. Electron Devices Soc., 4, 294 (2016).
[4] L. Zhu, J. Zhou, Z. Guo, and Z. Sun, “An overview of materials issues in resistive random access memory”, J. Mater., 1, 285 (2015).
[5] Y Fan., Characterization of porous BEOL dielectrics for resistive switching ECS Transactions, 72, 35, (2016).
[6] S. Yu, Resistive Random Access Memory (RRAM): From Devices to Array Architectures, Morgan & Claypool, San Rafael, CA (2016).
[7] S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, “Resistive switching characteristics of silicon nitride-based RRAM depending on top electrode metals”, IEICE Trans. Electron., E98-C, 5, 429, (2015).
[8] X. Jiang, Z. Ma, J. Xu, K. Chen, L. Xu, W. Li, X. Huang, and D. Feng, “a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths”, Sci. Rep. 5, 15762, (2015).
[9] G. Ghosh, “Dependence of Set, Reset and Breakdown Voltages of a MIM Resistive Memory Device on the input Voltage Waveform,” Master Thesis, Virginia Tech, Blacksburg, Virginia, USA (2015).
[10] D. Kumar, R. Aluguri, U. Chand, and T.-Y. Tseng, “Enhancement of resistive switching properties in nitride based CBRAM device by inserting an Al2O3 thin layer”, Appl. Phys. Lett., 110, 203102, (2017).
[11] D. Kumar, R. Aluguri, U. Chand, and T.-Y. Tseng, “Conductive bridge random access memory characteristics of SiCN based transparent device due to indium diffusion”, Nanotechnology, 29, 125202, (2018).
[12] F. Koehler, T.H. Triyoso, I. Hussain, B. Antonioli, and K. Hempel, “Challenges in spacer process development for leading-edge high-k metal gate technology” Phys. Status Solidi C 11, 73 (2014).
[13] R. H. E. C. Bosch, L. E. Cornelissen, H. C. M. Knoops, and W. M. M. Kessels,”Atomic Layer Deposition of Silicon Nitride from Bis(tertiary-butylamino)silane and N2 Plasma Studied by in Situ Gas Phase and Surface Infrared Spectroscopy,” Chem. Mater. 28, 5864 (2016).
[14] W. Jang, H. Jeon, H. Song, H. Kim, and J. Park, “The effect of plasma power on the properties of low-temperature silicon nitride deposited by RPALD for a gate spacer,” Phys. Status Solidi A 212, 2785 (2015).
[15] P. Xu and S. S. Rathi, “A Breakthrough in Low-k Barrier/Etch Stop Films for Copper Damascene Applications,” Semiconductor FABTECH, 11th Edition, 239, (2000).
[16] S.-H.K. Park, J. Oh, C.-S. Hwang, J.-I. Lee, Y.S. Yang, and H.Y. Chu, “Ultrathin film encapsulation of an OLED by ALD,” Electrochem. Solid State Lett. 8, H21 (2005).
[17] S. R. A. Ahmeda, S. Naitob, and K. Kobayashi, “Characterization of Low-Dielectric Constant Silicon Carbonitride (SiCN) Dielectric Films for Charge Trapping Nonvolatile Memories,” ECS Transactions, 69, 99 (2015)
[18] Y. Fan, S. King, J. Bielefeld, and M. Orlowski, “Characterization of Porous BEOL Dielectrics for Resistive Switching,” ECS Trans. 72, 35 (2016).
[19] E.P. Gusev, C. Cabral Jr., M. Copel, C. D’Emic, and M. Gribelyuk, “Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications,” Microelectronic Engineering 69, 145 (2003).
[20] R. A. Ovanesyan, N. Leick, K. M. Kelchner, D. M. Hausmann, and S. Agarwal, “Atomic Layer Deposition of SiCxNy Using Si2Cl6 and CH3NH2 Plasma,” Chem. Mater., 29, 6269, (2017).
[21] J. W. Klaus, A. W. Ott, A. C. Dillon, and S. M. George, “Atomic layer controlled growth of Si3N4 films using sequential surface reactions,” Surf. Sci. 418, L14 (1998).
[22] R. A. Ovanesyan, D. M. Hausmann, and S. Agarwal, “Low Temperature Conformal Atomic Layer Deposition of SiNx Films Using Si2Cl6 and NH3 Plasma,” ACS Appl. Mater. Interfaces 7, 10806 (2015).
[23] H. Kim, H. Song, C. Shin, K. Kim, W. Jang, H. Kim, S. Shin, and H. Jeon, “Dielectric barrier characteristics of Si-rich silicon nitride films deposited by plasma enhanced atomic layer deposition,” J. Vac. Sci. Technol. A, 35, 01A101 (2017).
[24] S. Weeks, G. Nowling, N. Fuchigami, M. Bowes, and K. Littau, “Plasma enhanced atomic layer deposition of silicon nitride using neopentasilane,” J. Vac. Sci. Technol. A, 34, 01A140 (2016).
[25] Park, J.-M.; Jang, S. J.; Yusup, L. L.; Lee, W.-J.; Lee, and S.-I, “Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride Using a Novel Silylamine Precursor,” ACS Appl. Mater. Interfaces, 8, 20865 (2016)
[26] H. C. M. Knoops, K. de Peuter, and W. M. M.Kessels, “Redeposition in plasma-assisted atomic layer deposition: Silicon nitride film quality ruled by the gas residence time,” Appl. Phys. Lett., 107, 014102 (2015).
[27] A. M. Andringa, A. Perrotta, K. de Peuter, H. C. M. Knoops, W. M. M. Kessels, and M. Creatore,” Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers,” ACS Appl. Mater. Interfaces 7, 22525 (2015).
[28] S. Suh, S. W. Ryu, S. Cho, J.-R. Kim, S. Kim, C.S. Hwang, and H.J. Kim, “Low-temperature SiON films deposited by plasma enhanced atomic layer deposition method using activated silicon precursor. J. Vac. Sci. Technol., A 34, 01A136 (2016).
[29] T. Suntola, J. Antson, A. Pakkala, and S. Lindfors, “Atomic layer epitaxy for producing EL thin films,” in SID International Symposium in San Diego, CA, Digest of Technical Papers (1977)
[30] L. G. Gosset, J.-F. Damlencourt, O. Renault, D. Rouchon, Ph. Holliger, A. Ermolieff, I. Trimaille, J.-J. Ganem, F. Martin, and M.-N. Séméria, J. Non-Cryst. Solids 303, 17 (2002).
[31] M. De Keijser and C. Van Opdorp, “Atomic layer epitaxy of gallium arsenide with the use of atomic hydrogen” Appl. Phys. Lett., 58, 1187 (1991)
[32] A. M. Andringa, A. Perrotta, K. DePeuter, H. C. M. Knoops, W. M. M. Kessels, and M. Creatore, “Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers,” ACS Appl. Mater. Interfaces, 7, 10806–13 (2015)
[33] W. Jang, H. Jeon, C. Kang, H. Song, J. Park, H. Kim, H. Seo, M. Leskela, and H. Jeon, “Temperature dependence of silicon nitride deposited by remote plasma atomic layer deposition,” Phys. Status Solidi. A211, 2166 (2014).
[34] S. W. King, “Plasma enhanced atomic layer deposition of SiNx:H and SiO2,” J. Vac. Sci. Technol., A 29, 041501 (2011).
[35] X, Meng, Y.-C. Byun, H. S. Kim, J. S. Lee, A. T. Lucero, L. Cheng, and J. Kim, “Atomic Layer Deposition of Silicon Nitride Thin Films: A Review of Recent Progress, Challenges, and Outlooks,” Materials 9, 1007 (2016)
[36] C. S. Hwang, Atomic Layer Deposition for Semiconductors, Springer US, New York (2014).
[37] Xie, Yuan. Emerging Memory Technologies, Springer, New York (2014).
[38] T. Faraz, F. Roozeboom, H. C. M. Knoops, and W. M. M. Kessels, “Atomic Layer Etching: What Can We Learn from Atomic Layer Deposition?”, ECS J. Solid State Sci. Technol., 4, (2015).
[39] H.-E. Tu, C.-J. Su, U.-S. Jeng, and J. Leu, “Effect of Porogen Incorporation on Pore Morphology of Low-k SiCxNy Films Prepared Using PECVD”, ECS J. Solid State Sci. Technol., 4, (2014)
[40] H.-E.Tu, Y.-H.Chen, and J. Leu, “Low-k SiCxNy Films Prepared by Plasma-Enhanced Chemical Vapor Deposition Using 1,3,5-trimethyl-1,3,5-trivinylcyclotrisilazane Precursor,” J. Electrochem. Soc., 159, G56, (2012).
[41] V. L. Nguyen, E. Zera, A. Perolo, R. Campostrini, W. Li, and G. D.Sorarù, “Synthesis and characterization of polymer-derived SiCN aerogel,” J. Eur. Ceram. Soc., 35 (2015)
[42] R. DiMundo, F. Palumbo, F. Fracassi, and R. D’Agostino, “Thin film deposition in capacitively coupled plasmas fed with bis(dimethylamino)-dimethylsilane and oxygen: An FTIR study,” Plasma Process. Polym, 6, 506 (2009)
[43] H. Shimizu, N. Tajima, T. Kada, S. Nagano, and Y. Shimogaki, “Novel Precursors for SiCH Low-k Caps beyond the 22 nm Node: Reactions of Silacyclopentane Precursors in the Plasma-Enhanced Chemical Vapor Deposition Process and Structural Analyses of SiCH Films,” Jpn. J. Appl. Phys., 50, 08KA01 (2011).
[44] H. Shimizu, N. Tajima, T. Kada, S. Nagano, Y. Ohashi, and S. Hasaka, “Novel Precursor for Development of Si–C 2 H 4 –Si Networks in SiCH for Application as a Low- k Cap Layer beyond 22 nm Nodes,” Jpn. J. Appl. Phys., 49, 05FF02 (2010).
[45] J. Lubguban, T. Rajagopalan, N. Mehta, B. Lahlouh, S. L. Simon, and S. Gangopadhyay, “Low-k organosilicate films prepared by tetravinyltetramethylcyclotetrasiloxane,” J. Appl. Phys., 92, 1033 (2002).
[46] A. M. Wrobel, I. Blaszczyk-Lezak, P. Uznanski, and B. Glebocki, “Remote hydrogen microwave plasma chemical vapor deposition of amorphous silicon carbonitride (a-SiCN) coatings derived from Tris(dimethylamino)silane,” Plasma Process. Polym., 8, 542 (2011).
[47] Gerhard Muller, Thomas Happ, Michael Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi, “Status and Outlook of Emerging Nonvolatile Memory Technologies”, IEDM, Tech. Dig., 567 (2004)
[48] R.E. Jones, Jr, P.D. Maniar, R. Moazzami, P. Zurcher, J.Z. Witowski, Y.T. Lii b, P. Chu and S.J. Gillespie, “Ferroelectric non-volatile memories for low-voltage, low-power applications”, Thin Solid Films 270, 584 (1995).
[49] A Sawa, “Resistive switching in transition metal oxides”, Material today., 11, 28 (2008).
[50] H. Kobayashi, T. Mizokuro, Y. Nakato, K. Yoneda, and Y. Todokoro, “Nitridation of silicon oxide layers by nitrogen plasma generated by low energy electron impact,” Appl. Phys. Lett., 71, 1978 (1997).
[51] C. K.Ande, H. C. M.Knoops, K.dePeuter, M.vanDrunen, S. D.Elliott, and W. M. M.Kessels, “Role of Surface Termination in Atomic Layer Deposition of Silicon Nitride,” J. Phys. Chem. Lett., 6, 3610 (2015).
[52] A. Sawa, T. Fujii, M. Kawasaki and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface”, Appl. Phys. Lett., 85, 4073 (2004)
[53] S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films”, Appl. Phys. Lett., 76, 2749 (2000)
[54] S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh,1 J. S. Lee,B. Kahng, J. H. Jang, M. Y. Kim, D.-W. Kim, and C. U. Jung,” Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors”, 92, 183507 (2008)
[55] Yu Chao Yang, Feng Pan, Qi Liu, Ming Liu, and Fei Zeng,” Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application”, Nano Lett., 9, 1636 (2009)
[56] Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, and A. Beckc, “Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals”, Appl. Phys. Lett., 78, 3738 (2001).
[57] Dooho Choi, Dongsoo Lee, Hyunjun Sim, Man Chang, and Hyunsang Hwang, “Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications”, Appl. Phys. Lett. 88, 082904 (2006)
[58] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer,” Reproducible switching effect in thin oxide films for memory applications”, Appl. Phys. Lett., 77, 3 (2000)
[59] C. C. Lin, B. C. Tu, C. C. Lin, C. H. Lin, and T. Y. Tseng, “Resistive Switching Mechanisms of V-Doped SrZrO3 Memory Films”, IEEE Electron Device Lett. 27, 725 (2006).
[60] S. Seo, and M. J. Lee, “Reproducible resistance switching in polycrystalline NiO films”, Appl. Phys. Lett., 85, 5655 (2004)
[61] W. Y. Chang, and Y. C. Lai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications”, Appl. Phys. Lett. 92, 022110, (2008)
[62] Weihua Guan, and Shibing Long, “Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide”, Appl. Phys. Lett. 91, 062111, (2007)
[63] C. P. Hsiung, and J. Y. Gan, “Resistance Switching Characteristics of TiO2 Thin Films Prepared with Reactive Sputtering”, Electrochemical and Solid-State Letters, 12, G31 (2009)
[64] M. Y. Chan, T. Zhang, V. Ho, and P. S. Lee, “Resistive switching effects of HfO2 high-k dielectric”, Microelectron. Eng. 85, 2420 (2008).
[65] K. C. Liu, W. H. Tzeng, K. M. Chang, Y. C. Chan, C. C. Kuo, and C.W. Cheng, “The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device”, Microelectron. Reliab. 50, 670 (2010).
[66] M. Fujimoto, and H. Koyama, “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching”, Appl. Phys. Lett., 89, 223509, (2006)
[67] M. J. Rozenberg, and I. H. Inoue, “Nonvolatile memory with Multilevel Switching: A Basic Model”, Phys. Rev. Lett. 92, 178302 (2004).
[68] Daniele Ielmini, and Yuegang Zhang,” Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices”, Journal of Applied Physics 102, 054517, (2007)
[69] N. Fainer, Y. Rumyantsev, M. Kosinova, E. Maximovski, V. Kesler, V. Kirienko, and F. Kuznetsov, Surf. Coat. Technol., 201, 9269 (2007).
[70] A. M. Wrobel, I. Blaszczyk-Lezak, A. Walkiewicz-Pietrzykowska, T. Aoki, and J. Kulpinski, J. Electrochem. Soc., 155, K66 (2008).
[71] E. Vassallo, A. Cremona, F. Ghezzi, F. Dellera, L. Laguardia, G. Ambrosone, and U. Coscia, Appl. Surf. Sci., 252, 7993 (2006)
[72] J. Lubguban, T. Rajagopalan, N. Mehta, B. Lahlouh, S. L. Simon, and S. Gangopadhyay, J. Appl. Phys., 92, 1033 (2002)
[73] A. M. Coclite, G. Ozaydin-Ince, F. Palumbo, A. Milella, and K. K. Gleason, Plasma Process. Polym., 7, 561 (2010)
[74] Z. Chen, K. Prasad, C. Y. Li, S. S. Su, D. Gui, P. W. Lu, X. He, and S. Balakumar, Thin Solid Films, 462, 223 (2004)
[75] Y. Taki, T. Kitagawa, and Osamu Takai, Thin Solid Films, 304, 183 (1997)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top