(34.237.124.210) 您好!臺灣時間:2021/02/25 19:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高宥榛
研究生(外文):Kao, Yu-Chen
論文名稱:以種子膨潤法探討聚乙烯醇對交聯高分子球之影響
論文名稱(外文):Effect of polyvinyl alcohol on the crosslinked polymer particles in seed swelling polymerization
指導教授:陳軍華陳軍華引用關係黃華宗
指導教授(外文):Chen, Chun-HuaWhang, Wha-Tzong
口試委員:陳軍華黃華宗李積琛陳凱琪黃淑禎
口試委員(外文):Chen, Chun-HuaWhang, Wha-TzongLee, Chi-ShenChen, Kai-ChiHuang, Shu-Chen
口試日期:2019-05-13
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:70
中文關鍵詞:聚甲基丙烯酸甲酯聚乙烯醇交聯高分子球
外文關鍵詞:poly(methyl methacrylatePolyvinyl Alcoholcross-linked polymer particle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是在種子膨潤聚合法架構下進行交聯粒子的粒徑、粒徑分佈、分散性與機械特性的探討,並用溶解度參數來解釋其現象。本論文可大致分成三大部份。第一部份針對聚乙烯醇分子量對交聯粒子粒徑與粒徑分佈的影響; 第二部份研究交聯劑結構對交聯粒子分散性的影響;最後部份為探討聚乙烯醇濃度對交聯粒子機械特性的影響。
第一部分的實驗顯示在種子膨潤階段,當聚乙烯醇分子量越高,膨潤效果越佳,交聯粒子粒徑越大,但同時介質黏度也提升,需要更多膨潤時間來讓單體與交聯劑膨潤進種子內。
第二部分實驗顯示交聯劑的結構影響溶脹階段的粒度均勻性,並根據其溶解度參數計算理論得知交聯劑的溶解度參數越偏離種子單體的溶解度參數,將會得到更均勻的溶脹顆粒。
最後部分的實驗顯示聚乙烯醇濃度影響了種子膨潤時單體與交聯劑擴散入種子內的程度與比例而造成機械特性的差異。根據其溶解度參數計算理論,聚乙烯醇的溶解度參數大大偏離單體與交聯劑,因此單體與交聯劑之間的相容性而造成其擴散度的差異。
In this study, the size, size distribution, dispersibility and mechanical properties of crosslinked particles were investigated by seed swelling polymerisation, and the phenomenon was explained using solubility parameters. This dissertation is divided into three parts. The first part assessed the effect of the molecular weight and concentration of polyvinyl alcohol (PVA) in seed swelling polymerisation. The second part determined the effect of the crosslinker structure on the dispersity of crosslinked particles in seed swelling polymerisation. The third part focused on controlling the mechanical properties of cross-linked poly(methyl methacrylate)(PMMA) particles by varying the concentration of PVA in seed swelling polymerisation.
In first part of experiments, it exhibited high molecular weight of PVA was more swellability than the low molecular weight of it (Mw: 10,000 g/mole). However, the media became highly viscous, so that PMMA seed needed more time to swell.
In second part of experiments, these results show that the structure of the crosslinking agent affects the particle size uniformity of the crosslinking agent from PMMA seeds. According to the solubility parameter theory of computation, the departure of similar solubility parameters causes the swollen particles to segregate into more uniform particles.
In last part of experiments, these results show that the concentration of PVA affects the proportion of monomer and crosslinker diffusing into the seed during the seed swelling stage, resulting in a difference in mechanical properties. According to the solubility parameter theory, the solubility parameter of the stabiliser is greatly different from that of the monomer and crosslinking agent. Therefore, the stabiliser may change the compatibility between the surface of the seed, the monomer and the crosslinking agent.
摘要 I
ABSTRACT II
ACKNOWLEDGMENTS IV
CONTENTS V
LIST OF SYMBOLS VII
TABLE CAPTION VIII
FIGURE CAPTION IX
CHAPTER 1 1
INTRODUCTION 1
CHAPTER 2 4
LITERATURE REVIEW 4
CHAPTER 3 15
EXPERIMENTAL 15
3.1 Materials 15
3.2 Preparation of Crosslinked PMMA Particles 16
3.2.1 Preparation of the PMMA Seed Child 17
3.2.2 Preparation of PMMA Seed Particles 17
3.2.3 Preparation of Swelling Crosslinked Particles 18
3.3 Characterisation 20
CHAPTER 4 21
RESULTS AND DISCUSSION 21
4.1 Results and Discussion for the effect of the molecular weight of PVA in seed swelling polymerization 24
4.1.1 Contact Angle 24
4.1.2 Seed Swelling Polymerization 26
4.2 Results and Discussion for the Dispersity of Cross-linked Polymer Particle 31
4.2.1 Properties of Cross-linked PMMA Particles 31
4.2.1.1 Optical Microscopy 31
4.2.1.2 Field Emission Scanning Electron Microscopy 32
4.2.1.3 Fourier transform infrared spectroscopy 35
4.2.1.4 Solubility parameter measurement 36
4.2.2 Properties of Cross-linked PMMA Particles 42
4.2.2.1 Optical Microscopy 42
4.2.2.2 Field Emission Scanning Electron Microscopy 43
4.2.2.3 Fourier Transform Infrared Spectroscopy 45
4.3 Results and Discussion for Studying the Mechanical Properties of Cross-linked Polymer Particle 48
4.3.1 Theoretical considerations of the equilibrium swelling of latex particles 48
4.3.2 The morphology and dispersive state of the prepared cross-linked PMMA microparticles 49
4.3.3 Mechanical properties of the cross-linked PMMA microparticles 51
4.3.4 The solubility parameters of PVA, MMA, and cross-linking agents 57
CHAPTER 5 59
CONCLUSION 59
REFERENCE 61
[1] N. Anwar, A. Rix, W. Lederleb, A. J. C. Kuehne, "RGD-decorated conjugated polymer particles as fluorescent bio-medical probes prepared by Sonogashira dispersion polymerization", Chemical Communications 51, pp. 9358-9361, May 2015.
[2] O. Philippova, A. Barabanova, V. Molchanov, A. Khokhlov, "Magnetic polymer beads: Recent trends and developments in synthetic design and applications", European Polymer Journal, 47, pp. 542-559, January 2011.
[3] M. Bazilchuk, S. R. Pettersen, H. Kristiansen, Z. Zhang, J. He, "Electromechanical characterization of individual micron-sized metal coated polymer particles‎", Journal of Applied Physics, 119, pp. 245102, June 2016.
[4] J. Cui, "Probing Bio-Nano Interactions with Templated Polymer Particles", Chem 2, pp. 606–609, May 2017.
[5] J. W. Kim, K. D. Suh, "Monodisperse polymer particles synthesized by seeded
polymerization techniques", Journal of Industrial and Engineering Chemistry, 14, pp. 1–9, January 2008.
[6] J. Ugelstad, K. Herder Kaggerud, F. K. Hansen, A. Berge, "A. Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles, 2. A two-step swelling process of polymer particles giving an enormous increase in absorption capacity", Macromolecular Chemistry and Physics, 180, pp. 737-744, March 1979.
[7] T. Yamashita, M. Okubo, "Micron-sized monodispersed polymer particles produced by seeded polymerization for the dispersion of high swelling of polymer particles with a large amount of monomer", Colloid and Polymer Science, 275, pp. 214-219, March 1997.
[8] M. Okubo, T. Hosotani, T. Yamashita, J. Izumi, "Influence of the swelling state of seed polymer particles with monomer on the morphology of micron-sized monodispersed composite polymer particles produced by seeded polymerization utilizing the dynamic swelling method", Colloid and Polymer Science, 275, pp. 888-892, September 1997.
[9] Q. Zhang, Y. H. Weicai, W. T. Song, J. Chang, "A theoretical and experimental investigation of the size distribution of polystyrene microspheres by seeded polymerization", Journal of Colloid and Interface Science, 342, pp. 62–67, February 2010.
[10] W. Yang, W. Ming, J. Hu, X. Lu, S. Fu, "Morphological investigations of crosslinked polystyrene microspheres by seeded polymerization", Colloid & Polymer Science, 276, pp. 655-661, September 1998.
[11] M. Okubo, E. Ise, T. Yamashita, "Production of micron-sized monodispersed polymer particles by seeded polymerization for the dispersion of highly monomer-swollen particles prepared with submicron-sized polymer seed particles utilizing the dynamic swelling method", Journal of Polymer Science: Part A: Polymer Chemistry, 36, pp. 2513–2519, January 2000.
[12] M. Okubo, T. Yamashita, M. Shiozaki, "Thermodynamics of high swelling of polymer particles with a large amount of monomer utilizing the dynamic swelling method", Journal of Applied Polymer Science, 60, pp. 1025-1031, May 1996.
[13] S. Zohrehvand, "On activated seed swelling technique", Polymer International, 54, pp. 1191–1195, April 2005.
[14] J. W. Kim, K. D. Suh, "Monodisperse micron-sized polystyrene particles by seeded polymerization: effect of seed crosslinking on monomer swelling and particle morphology", Polymer, 41, pp. 6181–6188, July 2000.
[15] M. Morton, S. Kaizerman, M. W. Altier, "Swelling of Latex Particles", Journal of Colloid and Interface Science, 9, pp. 300-312, April 1954.
[16] O. H. Kim, K. Lee, K. Kim, B. H. Lee, S. Choe, "Effect of PVA in dispersion polymerization of MMA", Polymer, 47, pp.1953-1959, March 2006.
[17] J. Hong, C. K. Hong, S. E. Shim, "Synthesis of polystyrene microspheres by dispersion polymerization using poly(vinyl alcohol) as a steric stabilizer in aqueous alcohol media", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, pp. 225-233, July 2007.
[18] S. Jiang E. D. S, V. L. Dimonie, M. S. El‐Aasser, " Dispersion polymerization of methyl methacrylate: Effect of stabilizer concentration", Journal of Applied Polymer Science, 107, pp. 2453-2458, 2008.
[19] R. Arshady, "Suspension, emulsion, and dispersion polymerization: A methodological survey", Colloid & Polymer Science, 270, pp. 717-732, August 1992.
[20] S. Shen, E. D. Sudol, M. S. El‐Aasser, "Dispersion Polymerization of Methyl Methacrylate: Mechanism of Particle Formation", Journal of Polymer Science: Part A Polymer Chemistry, 32, pp. 1087-1100, April 1994.
[21] W. Yang, D. Yang, J. Hu, C. Wang, S. Fu. "Dispersion Copolymerization of Styrene and Other Vinyl Monomers in Polar Solvents", Journal of Polymer Science: Part A: Polymer Chemistry, 39, pp. 555-561, January 2001.
[22] S. Jiang, E. D. Sudol, V. L. Dimonie, M. S. El-Aasser, "Dispersion Polymerization of Methyl Methacrylate: Effect of Stabilizer Concentration", Journal of Applied Polymer Science, 107, pp. 2453-2458, November 2007.
[23] A. J. Paine, W. Luymes, J. McNulty, "Dispersion Polymerization of Styrene in Polar Solvents. 6. Influence of Reaction Parameters on Particle Size and Molecular
Weight in Poly(N-vinylpyrro1idone)-Stabilized Reactions", Macromolecules, 23, pp. 3104-3109, June 1990.
[24] C. Zhang, Q. Wei, "Influence of Poly(methyl methacrylate) Particles with Different Initial Temperature Rising Ramps on Size Distribution in Dispersion Polymerization", Journal of Applied Polymer Science, 112, pp. 917-925, January 2009.
[25] S. M. Klein, V. N. Manoharan, D. J. Pine, F. F. Lange, "Preparation of monodisperse PMMA microspheres in nonpolar solvents by dispersion polymerization with a macromonomeric stabilizer", Colloid and Polymer Science, 282, pp. 7–13, May 2003.
[26] Taylor, Proc. Boy. Soc. London, 146A, 501, 1934.
[27] F. H. Winslow, W. Matreyek, "Particle Size in Suspension Polymerization", Journal of Industrial & Engineering Chemistry, 43, pp. 1108–1112, May 1951.
[28] O. H. Gonc¸alves, Jose´ M. Asua, P. H. H. de Arau´ jo, R. A. F. Machado, "Synthesis of PS/PMMA Core-Shell Structured Particles by Seeded Suspension Polymerization", Macromolecules, 41, pp. 6960-6964, September 2008.
[29] J. S. Mahur, R. Shrivastava, S. Dixit, C. S. Goswami, "Preparation of phenolic resin spheres by suspension polymerization technique: Effect of agitation rate", AIP Conference Proceedings, 1538, pp. 135-140, June 2013.
[30] Y. Taguchi, T. Suzuki, N. Saito, H. Yokoyama, M. Tanaka, "Preparation of Polymer Composite Particles by Phase Separation Followed by Suspension Polymerization", Open Journal of Composite Materials, 7, pp. 1-13, January 2017.
[31] S. C. Thickett, R. G. Gilbert, "Emulsion polymerization: State of the art in kinetics and mechanisms", Polymer, 48, pp. 6965-6991, November 2007.
[32] D. Nagao, T. Sakamoto, H.i Konno, S. Gu, M. Konno, " Preparation of Micrometer-Sized Polymer Particles with Control of Initiator Dissociation during Soap-Free Emulsion Polymerization ", Langmuir, 22, pp. 10958-10962, November 2006.
[33] G. Tuin, A.C.I. Peters, A.J.G. van Diemen, H.N. Stein, "Preparation of Large Monodisperse Polystyrene Particles by a One Step Surfactant-Free Emulsion Polymerization", Journal of Colloid and Interface Science, 158, pp. 508-510, July 1993.
[34] Y. Yamada, T. Sakamoto, S. Gu, M. Konno, "Soap-free synthesis for producing highly monodisperse, micrometer-sized polystyrene particles up to 6 μm", Journal of Colloid and Interface Science, 281, pp. 249–252, January 2005.
[35] H. Chu, H. Wang, Z. Ni, X. Liu, M. Chen, "Synthesis of submicron-sized composite particles with unique morphology by emulsifier-free seeded
emulsion copolymerization", Particuology, 6, pp. 369–375, October 2008.
[36] Y. Chen, S. Sajjadi, "Particle formation and growth in ab initio emulsifier-free emulsion polymerisation under monomer-starved conditions", Polymer, 50, pp. 357-365, January 2009.
[37] J. S. Downey, R. S. Frank, W. H. Li, H. D. H. Stöver*, "Growth mechanism of poly (divinylbenzene) microspheres in precipitation polymerization", Macromolecules, 32, pp. 2838–2844, April 7.
[38] T. Liu, P. Garner, J. M. DeSimone, G. W. Roberts, G. D. Bothun, "Particle Formation in Precipitation Polymerization: Continuous Precipitation Polymerization of Acrylic Acid in Supercritical Carbon Dioxide", Macromolecules, 39, pp. 6489-6494, August 2006.
[39] R. Karnka, P. Chaiyasat, A. Chaiyasat, "Synthesis of Uniform and Stable Molecularly Imprinted Polymer Particles by Precipitation Polymerization", Oriental Journal of Chemistry, 33, pp. 2370-2376, July 2017.
[40] L. Ye, "Molecularly Imprinted Micro- and Nano-Particles by Precipitation Polymerization", MRS Proceedings, 787 G7.3.1, 2003.
[41] J. Ugelstad, "Swelling capacity of aqueous dispersions of oligomer and polymer substances and mixtures thereof", Macromolecular Chemistry and Physics, 179, pp. 815-817, March 1978.
[42] J. Ugelstad, P.C. Mork, K.H. Kaggerud, T. Ellingsen, A. Berge, "Swelling of oligomer-polymer particles. New methods of preparation", Advances in Colloid and Interface Science, 13, pp. 101-140, April 1980.
[43] J. Ugelstad, A. Berge, T. Ellingsen, R. Schmid, T.N. Nilsen, P.C. Mork, P. Stenstad, E. Hornes, O. Olsvik, "Preparation and application of new monosized polymer particles", Progress in Polymer Science, 17, pp. 87-161, 1992.
[44] M. Okubo, Z. Wang, T. Yamashita, E. Ise, H. Minami, "Morphology of micron‐sized, monomer‐adsorbed, crosslinked polymer particles having snowmanlike shapes prepared by the dynamic swelling method", Journal of Polymer Science Part A: Polymer Chemistry, 39, pp. 3106-3111, August 2001.
[45] M. Okubo, M. Shiozaki, M. Tsujihiro, Y. Tsukuda, "Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method", Colloid and Polymer Science, 269, pp. 222-226, March 1991.
[46] J. S. Song, F. Tronc, M. A. Winnik, "Two-Stage Dispersion Polymerization toward Monodisperse, Controlled Micrometer-Sized Copolymer Particles", Journal of the American Chemical Society, 126, pp. 6562-6563, May 2004.
[47] H. Hu, R. G. Larson, "One-Step Preparation of Highly Monodisperse Micron-Size Particles in Organic Solvents", Journal of the American Chemical Society, 126, pp.13894-13895, October 2004.
[48] F. Bai, X. Yang, W. Huang, "Preparation of narrow or monodisperse poly(ethyleneglycol dimethacrylate) microspheres by distillation–precipitation polymerization", European Polymer Journal, 42, pp. 2088-2097, September 2006.
[49] A. J. Jose, S. Ogawa, M. Bradley, "Tuning the pore size and surface area of monodisperse Poly(Methyl Acrylate) beads via parallel seeded polymerisation", Polymer, 46, pp. 2880-2888, April 2005.
[50] R. M. Fitch, Polymer Colloids II, 1st ed., Springer US: Plenum Press, New York, 1980, P. 83.
[51] L. H. Jansson, M. C. Wellons, G. W. Poehlein, "High swelling of latex particles without the utilization of swelling agents", Journal of Polymer Science: Polymer Letters Edition, 21, pp. 937-943, November 1983.
[52] M. Okubo, M. Shiozaki, "Production of micron‐size monodisperse polymer particles by seeded polymerization utilizing dynamic swelling method with cooling process", Polymer International, 30, pp. 469-474, 1993.
[53] D. Kim, D. Y. Lee, K. Lee, S. Choe, "Effect of crosslinking agents on the morphology of polymer particles produced by one-step seeded polymerization", Macromolecular Research, 17, pp. 250-258, April 2009.
[54] S. Wu, Polymer Interface and Adhesion. Marcel Dekker, Inc: 1982; p 8.
[55] S. Rajendran, T. Uma, "Conductivity studies on PVC/PMMA polymer blend electrolyte", Materials Letters, 44, pp. 242-247, June 2000.
[56] S. Rajendran, T. Uma, "Lithium ion conduction in PVC–LiBF4 electrolytes gelled with PMMA", Journal of Power Sources, 88, pp. 282-285, June 2000.
[57] M. L. Huggins, "The Solubility of Nonelectrolytes. By Joel H. Hildebrand and Robert S. Scott", The Journal of Physical Chemistry, 55, pp. 619-620, April 1951.
[58] D.W. Van Krevelen, In Properties of Polymers, 2nd ed., Elsevier Science Ltd: Oxford, 1976, P. 138.
[59] P. Chaiyasat, A. Chaiyasat, W. Boontung, S. Promdsorn, S. Thipsit, "Preparation and Characterization of Poly(divinylbenzene) Microcapsules Containing Octadecane", Materials Sciences and Applications, 2, pp. 1007-1013, August 2011.
[60] D. O. Kim J. H. Jin, "Mechanical property investigation of single polymer particles with the variation of molecular structure of crosslinking monomer", Journal of Applied Polymer Science, 105, pp. 783-789, April 2007.
[61] Shimadzu Micro Compression Tester MCT-211 series instruction manual, Shimadzu Corporation, Tokyo, 2009.
[62] T. Wada, N. Nagatani, U. S. Patent No. 11,127,068, 27 July, 2009.
[63] J. Paul, S. Romeis, J. Tomas, W. Peukert, "A review of models for single particle compression and their application to silica microspheres", Advanced Powder Technology, 25, pp. 136-153, January 2014.
[64] J. Y. He, Z. L. Zhang, H. Kristiansen, K. Redford, G. Fonnum, G. I. Modahl, "Crosslinking effect on the deformation and fracture of monodisperse polystyrene-co-divinylbenzene particles", eXPRESS Polymer Letters, 7, pp. 365-374, December 2013.
電子全文 電子全文(網際網路公開日期:20240514)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔