跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:武光日
研究生(外文):Vo Quang Nhat
論文名稱:暗物質煙滅產生之暗玻色子極化現象
論文名稱(外文):POLARISATIONS OF DARK BOSON PRODUCED BY DARK MATTER ANNIHILATION
指導教授:林貴林
指導教授(外文):Guey-Lin, Lin
口試委員:高崇文寺西慶哲林貴林
口試委員(外文):Chung-Wen KaoYoshiaki TeranishiGuey-Lin, Lin
口試日期:21-01-2019
學位類別:碩士
校院名稱:國立交通大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:61
中文關鍵詞:暗物質暗玻色子費米子
外文關鍵詞:Dark matterDark bosonFermion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
自愛因斯坦提出廣義相對論後,宇宙膨脹的現象印證了此理論[1],哈伯太空望遠鏡也執行過多次關於宇宙膨脹的實驗[2],然而理論上的宇宙膨脹速度必然快於實驗測量到的結果,至於因素導致宇宙膨脹速度減緩的是什麼呢? 是暗物質,是存在於這個宇宙中的暗物質。
隨著當代前端科學的發展,標準模型最後一顆基本粒子,希格斯粒子已經在2012年被發現,標準模型的理論幾乎完備,然而還是有些粒子物理現象無法由標準模型解釋,例如微中子的質量順序為何? 微中子是狄拉克或馬約拉納粒子? 以及目前科學界尚未完全了解暗物質。
這篇論文的主要內容為在暗物質質量大於暗玻色子的條件下,由暗物質生成的暗玻色子湮滅後將遵守橫波偏振,我們的結論修正了先前暗玻色子湮滅為非偏振的假設,而考慮暗玻色子的偏振,得以正確得出暗玻色子生成的費米子光譜。
- Since Einstein proposed the theory of general relativity, it has since been proved that the expansion of the Universe is based on Einstein's equations [1]. Experimental, Hubble showed us that the universe is expanding [2]. However, theoretically, the universe must expand faster than the results obtained from experiments. Therefore, which factors have reduced the expansion of the Universe? That is Dark energy, Dark matter inside the Universe. In astrophysics, the term dark matter refers to a hypothetical material in the universe, whose components are not yet understood. The majority of dark matter is thought to be non-baryonic in nature, possibly being composed of some as-yet undiscovered subatomic particles.

- Today, along with the development of modern science, it was discovered the last particles in the standard model, typically Higgs boson, were discovered in 2012. However, the standard model now perhaps it is no longer true that it cannot explain some phenomena of particle physics in nature, such as the mass hierarchy of the neutrino, neutrino is particles Dirac or Majorana, ....

- The content of the last chapter of this thesis will be assumed to be unpolarised of the dark bosons from dark matter annihilation. Hence, the fermions (which we consider here is the neutrino case) produced by the decay of dark boson will have a spectrum will be a dependency on the function \cos by function quantity. This is completely different from the previously published results.
Contents
中文摘要 . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . ii
Acknowledgments . . . . . . . . . . . . . . . iii
List of Figures . . . . . . . . . . . . . . . v
List of Tables . . . . . . . . . . . . . . .vi
1 Introduction . . . . . . . . . . . . . . . 1
1.1 Dark matter and dark energy . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dark boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Neutrino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis orgnization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Particle physics model for dark boson 11
2.1 The Standard Model of Electroweak Interactions . . . . . . . . . . . . . 11
2.2 Electroweak interaction model for dark boson . . . . . . . . . . . . . . . 12
3 Polarisations of dark boson produced by dark matter annihilation 24
3.1 Polarisations of dark boson produced by dark matter annihilation . . . 24
3.2 The neutrino spectrum from polarized dark boson decays . . . . . . . . 29
4 Conclusion . . . . . . . . . . . . . . . 40
Appendix . . . . . . . . . . . . . . .41
Bibliography . . . . . . . . . . . . . . .51
[1]. A. Einstein, Cosmological Considerations in the General Theory of Relativity,Math.
Phys., 1917, 142-152, (1917).
[2]. Robert P. Kirshner, Hubbles diagram and cosmic expansion, HarvardSmithsonian Center for Astrophysics, MA 02138, (2013).
[3]. Penzias, A. A., and R. W. Wilson, A measurement of excess antenna temperature
at 4080 mc/ s Astrophys. J., 142, 419421, (1965).
[4]. G. Smoot et al., Cobe differential microwave radiometers: instrument design
and implementation, The Astrophysical Journal, 360, 685-695, (1990).
[5]. S. Perlmutter et al., Discovery of a supernova explosion at half the age of the
Universe, Nature, 391, 5154 (1998).
[6]. K. Garrett and G. Duda., Dark Matter: A Primer, Advances in Astronomy, 968283,
(2011).
[7]. Planck Collaboration, Planck 2015 results. III., Astronomy and Astrophysics, 594
A13, (2016).
[8]. H. Davoudiasl, H. S. Lee, W. J. Marciano, Dark Z implications for parity violation,
rare meson decays, and Higgs physics, Physical Review D, 85, 115019, (2012).
[9]. M. Thomson, Modern Particle Physics, Cambridge University Press, (2013).
[10]. Meszna, Balzs, Neutrino Oscillations, Wolfram Demonstrations Project, (2015).
[11]. Thomas K. Gaisser, Cosmic Rays and particle Physics, Cambridge University
Press 1990, pp. 37 (1990).
[12]. Particle Data Group, Review of Particle Physics, Chinese Physics C. 40: 100001,
(2016).
[13]. David Lurie, Particles and Fields, Interscience publishers a division of John Wiley
Sons, New York, (1968).
[14]. K. A. Olive al, Review of Particle Physics, Chin. Phys., C38 090001, (2014).
[15]. Harald Atmanspacher, Hans Primas (Eds.), Recasting Reality Wolfgang Pauli Philosophical Ideas and Contemporary Science Institut fur Grenzgebiete der Psychologie und Psychohygiene e. V, 978-3-540-85197-4 (2009).
[16]. T. D. Lee, C. N. Yang, Question of Parity Conservation in Weak Interactions,
Physical Review, 104 1, (1956).
[17]. Reines, F. and Cowan, Jr., C. L., The Neutrino, Nature, 178, 446-449, (1956).
[18]. E. F. Taylor, J. A. Wheeler, Exploring Black Holes: Introduction to General Relativity, Addison Wesley, (2000).
[19]. B. Dasgupta and R. Laha, Neutrinos in IceCube/KM3NeT as probes of dark matter substructures in galaxy clusters, Phys. Rev. D 86, 093001 (2012).
[20]. G. Jungman and M. Kamionkowski, Neutrinos from particle decay in the Sun
and Earth, Phys. Rev. D 51, 328 (1995).
[21]. G. Jungman and M. Kamionkowski, Dark Matter, CERN Physics. (2012).
[22]. J. D. Swart, G. Bertone and J. V. Dongen, How dark matter came to matter, Nature Astronomy, 1 (59), 0059 (2017).
[23]. W. Vlasak, A New Theory on What Constitutes Dark Matter, (2015).
[24]. G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and
constraints, Physics Reports, 405, 279-390, (2005).
[25]. Yen-Hsun Lin, Indirect Detection of Dark Matter through Neutrinos, PhD Thesis, National Chiao-Tung University, (2016).
[26]. N. F. Bell and K. Petraki, Enhanced neutrino signals from dark matter annihilation in the Sun via metastable mediators, Journal of Cosmology and Astroparticle Physics, 04 003, (2011).
[27]. C. S. Chen, G.L. Lin and Y. H. Lin, Complementary test of the dark matter selfinteraction in dark U(1) model by direct and indirect dark matter detection,
Journal of Cosmology and Astroparticle Physics, 01 013, (2016).
[28]. G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva,
Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516, 1
(2012).
[29]. H. Davoudiasl, H. S. Lee and W. J. Marciano, Theory and phenomenology of
two-Higgs-doublet models, Phys. Rev. D, 85, 115019 (2012).
[30]. M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory, (1995).
[31]. G.L. Fogli, E. Lisi, A. Marrone, G. Scioscia, Super-Kamiokande atmospheric neutrino data, zenith distributions, and three-flavor oscillations, Phys. Rev. D, 59
033001 (1998).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top