|
[1]. A. Einstein, Cosmological Considerations in the General Theory of Relativity,Math. Phys., 1917, 142-152, (1917). [2]. Robert P. Kirshner, Hubbles diagram and cosmic expansion, HarvardSmithsonian Center for Astrophysics, MA 02138, (2013). [3]. Penzias, A. A., and R. W. Wilson, A measurement of excess antenna temperature at 4080 mc/ s Astrophys. J., 142, 419421, (1965). [4]. G. Smoot et al., Cobe differential microwave radiometers: instrument design and implementation, The Astrophysical Journal, 360, 685-695, (1990). [5]. S. Perlmutter et al., Discovery of a supernova explosion at half the age of the Universe, Nature, 391, 5154 (1998). [6]. K. Garrett and G. Duda., Dark Matter: A Primer, Advances in Astronomy, 968283, (2011). [7]. Planck Collaboration, Planck 2015 results. III., Astronomy and Astrophysics, 594 A13, (2016). [8]. H. Davoudiasl, H. S. Lee, W. J. Marciano, Dark Z implications for parity violation, rare meson decays, and Higgs physics, Physical Review D, 85, 115019, (2012). [9]. M. Thomson, Modern Particle Physics, Cambridge University Press, (2013). [10]. Meszna, Balzs, Neutrino Oscillations, Wolfram Demonstrations Project, (2015). [11]. Thomas K. Gaisser, Cosmic Rays and particle Physics, Cambridge University Press 1990, pp. 37 (1990). [12]. Particle Data Group, Review of Particle Physics, Chinese Physics C. 40: 100001, (2016). [13]. David Lurie, Particles and Fields, Interscience publishers a division of John Wiley Sons, New York, (1968). [14]. K. A. Olive al, Review of Particle Physics, Chin. Phys., C38 090001, (2014). [15]. Harald Atmanspacher, Hans Primas (Eds.), Recasting Reality Wolfgang Pauli Philosophical Ideas and Contemporary Science Institut fur Grenzgebiete der Psychologie und Psychohygiene e. V, 978-3-540-85197-4 (2009). [16]. T. D. Lee, C. N. Yang, Question of Parity Conservation in Weak Interactions, Physical Review, 104 1, (1956). [17]. Reines, F. and Cowan, Jr., C. L., The Neutrino, Nature, 178, 446-449, (1956). [18]. E. F. Taylor, J. A. Wheeler, Exploring Black Holes: Introduction to General Relativity, Addison Wesley, (2000). [19]. B. Dasgupta and R. Laha, Neutrinos in IceCube/KM3NeT as probes of dark matter substructures in galaxy clusters, Phys. Rev. D 86, 093001 (2012). [20]. G. Jungman and M. Kamionkowski, Neutrinos from particle decay in the Sun and Earth, Phys. Rev. D 51, 328 (1995). [21]. G. Jungman and M. Kamionkowski, Dark Matter, CERN Physics. (2012). [22]. J. D. Swart, G. Bertone and J. V. Dongen, How dark matter came to matter, Nature Astronomy, 1 (59), 0059 (2017). [23]. W. Vlasak, A New Theory on What Constitutes Dark Matter, (2015). [24]. G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints, Physics Reports, 405, 279-390, (2005). [25]. Yen-Hsun Lin, Indirect Detection of Dark Matter through Neutrinos, PhD Thesis, National Chiao-Tung University, (2016). [26]. N. F. Bell and K. Petraki, Enhanced neutrino signals from dark matter annihilation in the Sun via metastable mediators, Journal of Cosmology and Astroparticle Physics, 04 003, (2011). [27]. C. S. Chen, G.L. Lin and Y. H. Lin, Complementary test of the dark matter selfinteraction in dark U(1) model by direct and indirect dark matter detection, Journal of Cosmology and Astroparticle Physics, 01 013, (2016). [28]. G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516, 1 (2012). [29]. H. Davoudiasl, H. S. Lee and W. J. Marciano, Theory and phenomenology of two-Higgs-doublet models, Phys. Rev. D, 85, 115019 (2012). [30]. M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory, (1995). [31]. G.L. Fogli, E. Lisi, A. Marrone, G. Scioscia, Super-Kamiokande atmospheric neutrino data, zenith distributions, and three-flavor oscillations, Phys. Rev. D, 59 033001 (1998).
|