跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/28 10:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳孟君
研究生(外文):Chen, Meng-Jun
論文名稱:線上合作問題解決3D微觀模擬實驗課程對國中生電池電解問題解決能力之影響
論文名稱(外文):The impact of online collaborative problem solving with 3D simulated experiment on 8th graders’ electrochemistry learning
指導教授:佘曉清佘曉清引用關係
指導教授(外文):She, Hsiao-Ching
口試日期:2019-07-31
學位類別:碩士
校院名稱:國立交通大學
系所名稱:教育研究所
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:70
中文關鍵詞:線上合作問題解決鷹架模擬
外文關鍵詞:online collaborative problem solvingscaffoldingsimulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究設計並發展電池及電解兩個單元的線上合作問題解決3D微觀模擬實驗學習課程,其中一組以鷹架融入線上合作問題解決企圖探討其對國中學生之電池電解問題解決能力的影響。研究對象為新竹地區某國中八年級學生共105位,依研究設計分為線上合作問題解決組(N=52)及鷹架融入線上合作問題解決組(N=53)分別進行線上課程學習。在學習前與學習後均收集所有學生的電池電解問題解決測驗及問卷調查(學習動機、合作興趣、科學自我效能、科學興趣、認識觀知識)測驗,同時蒐集學生在線上課程中的合作問題解決學習歷程,以深入探討學生在學習過程中的變化情形。
研究結果顯示,兩種學習模式在電池電解問題解決測驗後測上皆有提升,其中鷹架融入線上合作問題解決組在後測有顯著進步,但兩種學習模式對學生問題解決表現沒有顯著差異。從問卷調查的分析結果看來,對於電池電解問題解決後測最具預測力的變項為科學興趣。而在線上學習歷程分項表現上,電池概念延伸問題表現是電池電解問題解決後測最具預測力的因子,其次為電解概念延伸問題表現。
線上學習歷程的質性分析資料顯示在整個學習的歷程中鷹架融入線上合作問題解決組的表現越來越好,並與線上合作問題解決組拉近差距。因此總結兩種學習模式各具其優勢,且不相上下,可見得線上合作問題解決學習不論融入鷹架與否均能有效的提升學生的問題解決能力,並顯示學生的科學興趣是最具影響線上合作問題解決課程中的學習表現的因子。
This study developed electrochemistry online collaborative problem which specifically focus on providing students with opportunity to experience the collaborative problem solving experience with their peers and also actually doing experiment with 3D animation experiments. The main purpose of this study was to examine the effectiveness of online collaborative problem solving integrate with/without scaffolding on 8th graders’ problem solving performance.
A total of 105 eight grade students were randomly assigned into two different groups which one of the group received online collaborative problem solving program (N=52) and the other group received scaffolding embedded online collaborative problem solving program (N=53). All of the students have received problem solving test and affective questionnaires before and after learning. Students’ online collaborative problem solving process were also collected as well during their online collaborative problem solving.
Results indicated that the both groups all made progress on their problem solving performance after learning and only scaffolding embedded collaborative problem solving group made significant progress on their problem solving performance after learning. For the students’ questionnaires, it showed that only the dimensions of epistemic beliefs and enjoyment of science significantly correlated with their problem solving performance. Regression results further indicated that the enjoyment of science is the most predictive factor to predict students’ problem solving performance. Besides, the regression results also indicated that the most predictive factor of online learning process can predict students’ problem solving performance is the performance of battery concept extension problem score following by the performance of electrolysis concept extension problem score. The qualitative analysis of online problem solving process showed that scaffolding embedded collaborative problem solving group made progress as time went on and close up the difference with collaborative problem solving group. Both of the quantitative and qualitative results indicated that both types of collaborative problem solving program do foster students’ problem solving performance without any significant difference between groups. It implies both types of collaborative problem solving do have their own merits and do enhance students’ problem solving learning.
中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表 目 錄 vii
圖 目 錄 viii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究問題 2
第四節 名詞釋義 3
第五節 研究範圍與限制 4
第二章 文獻探討 5
第一節 合作問題解決 5
第二節 鷹架 11
第三節 模擬 14
第四節 科學態度、合作態度與認識觀知識 16
第五節 電化學學習困難 19
第三章 研究方法 21
第一節 研究對象 21
第二節 研究設計 22
第三節 研究流程 23
第四節 研究工具 24
第五節 教學設計 28
第六節 資料蒐集與分析 29
第四章 研究結果與討論 31
第一節 線上合作問題解決學習成效分析 31
第二節 線上合作問題解決學習歷程分析 33
第三節 線上合作問題解決學習歷程之質性分析 38
第五章 結論與建議 55
第一節 結論 55
第二節 建議 57
參考文獻 59
附錄 65
附錄一 電池電解問題解決測驗 65
附錄二 電池電解問題解決測驗評分標準 66
附錄三 學生問卷向度細目表 68
附錄四 學習歷程之問題解決題目及概念延伸問題 69
附錄五 學習歷程之問題解決題目及概念延伸問題評分標準 69
一、 中文部分
教育部 (2014)。十二年國民基本教育課程綱要總綱。台北:教育部。
李琼慧 (2001)。以凱利方格法探究國三學生電化學迷思概念(未出版之碩士論
文)。國立臺灣師範大學,台北市。
林香岑 (2001) 。高中「電化學」概念媒體教學與教師教學策略之研究(未出版之
碩士論文)。國立臺灣師範大學,台北市。
佘曉清、林煥祥(主編) (2017)。PISA 2015台灣學生的表現。新北市:心理。
郭順利 (1998)。高中學生在電化學的錯誤概念(未出版之碩士論文)。國立臺灣師
範大學,台北市。

二、 英文部分
American Association for the Advancement of Science (AAAS) (1993). Project
2061: Benchmarks for Science Literacy. New York: Oxford University Press.
Adams, F. H. (2013). Using Jigsaw Technique as an Effective Way of Promoting Co-Operative Learning Among Primary Six Pupils in Fijai. International Journal of Education and Practice, 1(6), 64-74.
Allsop, R. T., and George, N. H. (1982). Redox in nuffield advanced chemistry.
Education in Chemistry, 19, 57-5.
Azevedo, R., & Hadwin, A. F. (2005). Scaffolding self-regulated learning and
metacognition-Implications for the design of computer-based scaffolds.
Instructional Science, 33, 367-379.
Abdu, R., Schwarz, B., & Mavrikis, M. (2015). Whole-class scaffolding for learning
to solve mathematics problems together in a computer-supported environment.
ZDM, 47(7), 1163-1178.
Acar, B., & Tarhan, L. (2007). Effect of Cooperative Learning Strategies on
Students' Understanding of Concepts in Electrochemistry. International Journal
Of Science And Mathematics Education, 5 (2), 349-373.
Brown, V. (1993). The artificial foot. Electronics Education, 1993 (1), 13-14.
Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How People Learn: Brain,
Mind, Experience, and School. Washington DC: National Academy Press.
Brown, A. L., & Palincsar, A. S. (1989). Guided, cooperative learning and
individual knowledge acquisition. In L. B. Resnick (Ed.), Knowing, learning and
instruction: Essays in honor of Robert Glaser (pp. 393-451). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Blake, C., & Scanlon, E. (2007). Reconsidering simulations in science education at
a distance: features of effective use. Journal of Computer Assisted Learning,
23(6), 491-502.
Chen, C., & Bradshaw, A. (2007). The Effect of Web-Based Question Prompts on
Scaffolding Knowledge Integration and Ill-Structured Problem Solving. Journal
Of Research On Technology In Education, 39(4), 359-375.
Chi, M.T.H. & Glaser, R. (1985). Problem solving ability. In R.J. Sternberg (Ed.),
Human abilities: An information processing approach. New York: W.H.
Freeman.
Chi, M. T. H., Slotta, J. D., & De Leeuw, N. (1994). From things to processes: A
theory of conceptual change for learning science concepts. Learning and
Instruction, 4 (1), 27-43.
Duschl, R. (2008). Science Education in Three-Part Harmony: Balancing Conceptual, Epistemic, and Social Learning Goals. Review Of Research In Education, 32 (1), 268-291.
Duran, M. J., Gallardo, S., Toral, S. L., Martinez-Torres, R., & Barrero, F. J. (2007).
A learning methodology using Matlab/Simulink for undergraduate electrical
engineering courses attending to learner satisfaction outcomes. International
Journal of Technology and Design Education, 17 (1), 55-73.
Demetriadis, S., Papadopoulos, P., Stamelos, I., & Fischer, F. (2008). The effect of
scaffolding students’ context-generating cognitive activity in
technology-enhanced case-based learning. Computers & Education, 51 (2),
939-954.
de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with
computer simulations of conceptual domains. Review of Educational Research,
68 (2), 179-201.
Fyle (Jnr), C. (2003). Guidelines for Structuring Simulations to Facilitate the
Removal of Misconceptions in Learning. In D. Lassner & C. McNaught (Eds.),
Proceedings of ED-MEDIA 2003--World Conference on Educational
Multimedia,Hypermedia & Telecommunications (pp. 2634-2641). Honolulu,
Hawaii, USA: Association for the Advancement of Computing in Education
(AACE). Retrieved October 14, 2018 from
https://www.learntechlib.org/primary/p/14281/.
Fawcett, L., & Garton, A. (2005). The effect of peer collaboration on children's
problem-solving ability. British Journal Of Educational Psychology, 75 (2),
157-169.
Gardner, P. (1975). Attitudes to Science : A Review. Studies In Science Education,
2 (1), 1-41.
Greeno, J. (1978). Natures of problem-solving abilities. In W. Estes (Ed.),
Handbook of learning and cognitive processes (pp. 239-270). Hillsdale, NJ:
Lawrence Erlbaum Associates.
Gelbart, H., Brill, G., & Yarden, A. (2009). The impact of a web-based research  
simulation in bioinformatics on students’understanding of genetics. Research in
Science Education, 39(5), 725-751.
Gomez, E., Wu, D., & Passerini, K. (2010). Computer-supported team-based learning: The impact of motivation, enjoyment and team contributions on learning outcomes. Computers & Education, 55 (1), 378-390.
Garnett, P.J., Garnett, P.J. & Treagust, D.F. (1990). Implications of research of
students’understanding of electrochemistry for improving science curricula and
classroom practice. International Journal of Science Education, 12, 147-156.
Ge, X., Planas, L.G., & Er, N. (2010). A Cognitive Support System to Scaffold
Students’ Problem-based Learning in a Web-based Learning Environment.
Interdisciplinary Journal of Problem-Based Learning, 4 (1).
Gabel, D.L., Samuel, K.V., & Hunn, D. (1987). Understanding the particulate nature
of matter. Journal of Chemical Education, 64, 695-697.
Garnett, P., & Treagust, D. (1992). Conceptual difficulties experienced by senior
high school students of electrochemistry: Electrochemical (galvanic) and
electrolytic cells. Journal Of Research In Science Teaching, 29 (10), 1079-1099.
Hofer, B., & Pintrich, P. (1997). The Development of Epistemological Theories:   
  Beliefs about Knowledge and Knowing and Their Relation to Learning. Review   
  Of Educational Research, 67(1), 88.
Heller, P., Keith, R., & Anderson, S. (1992). Teaching problem solving through
cooperative grouping. Part 1: Group versus individual problem solving.
American Journal Of Physics, 60(7), 627-636.
Jonassen, D. (1997). Instructional design models for well-structured and
III-structured problem-solving learning outcomes. Educational Technology
Research And Development, 45 (1), 65-94.
Johnson, D. W., & Johnson, R. T. (1979). Conflict in the classroom: Controversy
and learning. Review of Educational Research, 49, 51-70.
Kitchner, K. S. (1983). Cognition, metacognition, and epistemic cognition:A
three-level model of cognitive processing. Human Development, 26, 222-232.
Klopfer, L. E. (1971). Evaluation of learning in science. In B. S. Bloom, J. T.
Hastings & G. F.Madaus (Eds.), Handbook of formative and summative
evaluation of student learning (London:McGraw-Hill).
Kauffman, D., Ge, X., Xie, K. and Chen, C. (2008). Prompting in Web-Based
Environments: Supporting Self-Monitoring and Problem Solving Skills in
College Students. Journal of Educational Computing Research, 38 (2), 115-137.
Kao, M., Lehman, J., & Cennamo, K. (1996). Scaffolding in hypermedia assisted
instruction: An example of integration. Paper presented at the annual meeting of
the Association for Educational Communications and Technology, Indianapolis,
IN.
Kiboss, J. K., Ndirangu, M., & Wekesa, E. W. (2004). Effectiveness of a
computer-mediated simulations program in school biology on pupils’learning
outcomes in cell theory. Journal of Science Education and Technology, 13 (2),
207-213.
Kirschner, F., Paas, F., Kirschner, P., & Janssen, J. (2011). Differential effects of
problem-solving demands on individual and collaborative learning outcomes.
Learning And Instruction, 21(4), 587-599.
Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell &
  N. G. Lederman (Eds.), Handbook of research on science education (pp. 831- 
880). Mahwah, NJ: Erlbaum.
Lee, C., & Chen, M. (2009). A computer game as a context for non-routine
mathematical problem solving: The effects of type of question prompt and level
of prior knowledge. Computers & Education, 52(3), 530-542.
Lazakidou, G., & Retalis, S. (2010). Using computer supported collaborative
learning strategies for helping students acquire self-regulated problem-solving
skills in mathematics. Computers & Education, 54 (1), 3-13.
Mayer, R. E. (2003). The promise of multimedia learning. In R. E. Mayer(Ed.),
Multimedia learning(pp. 1-20). New York: Cambridge University Press.
Mason, L., Boscolo, P., Tornatora, M. C., & Ronconi, L. (2013). Besides knowledge:
A cross-sectional study on the relations between epistemic beliefs, achievement
goals, self-beliefs, and achievement in science. Instructional Science, 41 (1),
49-79.
Narmadha, U., & Chamundeswari, S. (2013). Attitude towards Learning of Science and Academic Achievement in Science among Students at the Secondary Level. Journal Of Sociological Research, 4 (2), 114.
OECD. (2013). PISA 2015: Draft collaborative problem solving framework.
http://www.oecd.org/pisa/pisaproducts/
OECD (2017), PISA 2015 Assessment and Analytical Framework: Science, Reading,
Mathematic, Financial Literacy and Collaborative Problem Solving, revised
edition, PISA, OECD Publishing, Paris.
http://dx.doi.org/10.1787/9789264281820-en
Omotayo, K. H. (2002). Correlates of Attitude towards Science and Academic Achievement of Secondary School Students in Science subjects. The Nigerian Teacher Today, 10, 119-125.
Ogude, A., & Bradley, J. (1994). Ionic Conduction and Electrical Neutrality in
Operating Electrochemical Cells: Pre-College and College Student
Interpretations. Journal Of Chemical Education, 71 (1), 29-34.
Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal Of Science Education, 25(9), 1049-1079.
Reiser, B. J. (2005). Scaffolding complex learning: The mechanisms of structuring
and problematizing student work. Journal of the Learning Sciences, 13 (2),
273-304.
Ryan, A., & Aikenhead, G. (1992). Students' Preconceptions about the Epistemology
of Science. Science Education, 76(6), 559-580.
Raes, A., Schellens, T., De Wever, B. & Vanderhoven, E. (2012). Scaffolding
information problem solving in web-based collaborative inquiry learning.
Computers & Education, 59 (1), 82-94.
Rutten, N., van Joolingen, W., & van der Veen, J. (2012). The learning effects of
computer simulations in science education. Computers & Education, 58 (1),
136-153.
Sternberg, R. J. (2003). Cognitive psychology (3rd Ed.). Belmont, CA: Thomson
press.
Saye, J., & Brush, T. (2002). Scaffolding critical reasoning about history and social
issues in multimedia-supported learning environments. Educational Technology
Research And Development, 50(3), 77-96.
Sanger, M.J. & Greenbowe, T.J. (1997). Common student misconceptions in
electrochemistry: Galvanic, electrolytic, and concentration cells. Journal of
Research in Science Teaching, 34(4), 377-398.
Sanger, M.J. & Greenbowe, T.J. (1999) An analysis of college chemistry textbooks as
sources of misconceptions and errors in electrochemistry. Journal of Chemical
Education, 76, 853-860.
Schwier,R. A., & Misanchuk, E. R. (1993). Definition of interactive multimedia
instruction. In R. A. Schwier,& E. R. Misanchunk (Eds.), Interactive multimedia
instruction(pp.3-17). Englewood Cliffs, NJ: Educational Technology
Publications.
Shin, N., Jonassen, D., & McGee, S. (2003). Predictors of well-structured and
ill-structured problem solving in an astronomy simulation. Journal Of Research
In Science Teaching, 40 (1), 6-33.
She, H., Cheng, M., Li, T., Wang, C., Chiu, H., & Lee, P. et al. (2012). Web-based
undergraduate chemistry problem-solving: The interplay of task performance, domain knowledge and web-searching strategies. Computers & Education, 59 (2), 750-761.
She, H., Lin, H., & Huang, L. (2019). Reflections on and implications of the
programme for international student assessment 2015 performance of students in
Taiwan: The role of epistemic beliefs about science in scientific literacy. Journal
Of Research In Science Teaching. doi: 10.1002/tea.21553
Uribe, D., Klein, J., & Sullivan, H. (2003). The effect of computer-mediated
collaborative learning on solving III-defined problems. Educational Technology
Research And Development, 51 (1), 5-19.
Vygotsky, L. (1978). Mind in society. London: Harvard University Press.
Wood, P.K. (1983). Inquiring systems and problem structures: Implications for
cognitive development. Human Development, 26, 249-265.
Watts, M. (1994). Problem solving in science and technology: Extending good
classroom practice. London: David Fulton Publishers.
Wood, D. J., Bruner, J. S., & Ross, G. (1976). The Role of Tutoring in Problem
Solving. Journal of Child Psychiatry and Psychology, 17 (2), 89-100.
Webb, N. M., & Palincsar, A. S. (1996). Group processes in the classroom.
(pp.841–873) In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational
psychology. New York: Simon & Schuster Macmillan.
Xie, K., & Bradshaw, A.C. (2008).Using question prompts to support ill-structured
problem solving in online peer collaborations. International Journal of
Technology in Teaching and Learning,4 (2),148-165.
Xun, G., & Land, S. (2004). A conceptual framework for scaffolding III-structured
problem-solving processes using question prompts and peer interactions.
Educational Technology Research And Development, 52 (2), 5-22.
電子全文 電子全文(網際網路公開日期:20240811)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top