|
[1] D.T. Lawrence, B.A. Golomb, and T.J. Sejnowski, “Sexnet: A neural network identifies sex from human faces”, Neural Information Processing Systems, pp. 572–577, 1991. [2] Lu, L. and P. Shi. “A novel fusion-based method for expression-invariant gender classification”, in Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on. 2009. IEEE. [3] Li, B., X.-C. Lian, and B.-L. Lu, “Gender classification by combining clothing, hair and facial component classifiers”, Neurocomputing, 2012. 76(1): p. 18-27. [4] Cao, L., Dikmen, M., Fu, Y., Huang, T.: “Gender recognition from body”, In: ACM Multimedia (2008) [5] M. Collins, J. Zhang, P. Miller, and H. Wang, “Full body image feature representations for gender profiling”, Proc.ICCV Workshops, pp.1234-1242.2009. [6] [Online]https://vision.soe.ucsc.edu/node/178. [7] Liu, X., Li, S., Kan, M., Zhang, J., Wu, S., Liu, W., Han, H., Shan, S., & Chen, X. (2015). “Agenet: Deeply learned regressor and classifier for robust apparent age estimation”, IEEE International Conference on Computer Vision (ICCV) Workshops [8] Y. Ge, J. Lu, X. Feng, and D. Yang, “Body-based human age estimation at a distance”, Proc. ICME Workshops, 2013. [9] G. Levi and T. Hassncer. “Age and gender classification using convolutional neural networks”, In IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 34–42, 2015. [10] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.Howard, W. Hubbard, and L. D. Jackel. “Backpropagation applied to handwritten zip code recognition”, Neural computation, 1(4):541–551, 1989. 1, 3 [11] A. Krizhevsky, I. Sutskever, and G. Hinton. “ImageNet classification with deep convolutional neural networks”, In NIPS, 2012. [12] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale image recognition”, In ICLR, 2015. [13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., “Going deeper with convolutions”, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9. [14] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, In Proceedings of The 32nd International Conference on Machine Learning, pages 448–456, 2015. [15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. “Rethinking the Inception architecture for computer vision”, arXiv preprint, 1512.00567, 2015. [16] C. Szegedy, S. Ioffe, and V. Vanhoucke. “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning”, In CoRR (2016) [17] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”, In Proceedings of CVPR, pages 770–778, 2016. [18] J. Zhu, S. Liao, Z. Lei, and S. Z. Li. “Multi-label convolutional neural network based pedestrian attribute classification”, Image and Vision Computing, 2016. 1, 2 Felzenszwalb, P., Huttenlocher, D.: “Efficient graph-based image segmentation”, IJCV (2004) 167–181 [19] Yutian Lin, Liang Zheng, Zhedong Zheng, Yu Wu, Yi Yang. “Improving Person Re-identification by Attribute and Identity Learning”, 2017, arXiv:1703.07220 [20] Y. Deng, P. Luo, C.C. Loy, X. Tang, “Pedestrian attribute recognition at far distance”, International Conference on Multimedia, ACM. 2014, pp. 789–792. [21] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Ssstrunk. “SLIC Superpixels”, Technical report, 2010.
|