(3.238.7.202) 您好!臺灣時間:2021/03/02 01:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張博彥
研究生(外文):Chang, Po-Yen
論文名稱:物聯網通訊之高效省電排程於M2M及D2D共存網路
論文名稱(外文):Energy-Efficient DRX Scheduling for IoT Communication in M2M and D2D Coexisting Networks
指導教授:曾煜棋曾煜棋引用關係梁家銘梁家銘引用關係
指導教授(外文):Tseng, Yu-CheeLiang, Jia-Ming
口試委員:曾建超陳志成洪樂文丁邦安陳建志曾煜棋梁家銘
口試委員(外文):Tseng, Chien-ChaoChen, Jyh-ChengHong, Yao-Win PeterTing, Pang-AnChen, Jen-JeeTseng, Yu-CheeLiang, Jia-Ming
口試日期:2018-7-23
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:68
中文關鍵詞:非連續接收機制裝置間通訊物聯網機器間通訊巨量連結節能服務質量資源複用資源排程小數據
外文關鍵詞:Discontinuous Reception/Discontinuous Transmission (DRX/DTX)Device-to-Device (D2D)Fifth Generation (5G)Internet of things (IoT)Machine-to-Machine (M2M)Massive ConnectivityPower SavingResource ReuseResource AllocationSmall Data
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
機器對機器間通訊(Machine-to-machine, M2M)和裝置對裝置間通訊技術(Device-to-Device, D2D)是實現下一代網路的關鍵技術之一。由於物聯網應用主要著重於環境感測,如:智慧電錶、家庭保全、災害偵測及遠端醫療等,其週期性或突發性的感應偵測行為形成特有的小數據,傳遞時容易造成資源的浪費;同時,由於物聯網的應用會頻繁的傳遞感測資料,這會使得功率的消耗大幅增加。另一方面,隨著智慧型裝置的蓬勃發展,即時語音、視頻串流等高頻寬媒體服務也隨之增長,同時也造成蜂巢式網路(Cellular Network)的頻譜資源急速耗盡。為了讓更多裝置的媒體應用能被服務,3GPP提出了裝置對裝置間的通訊技術(D2D),以解決蜂巢式網路擁塞的問題。然而,由於D2D 通訊和蜂巢式網路用戶及物聯網裝置使用相同的無線頻譜資源,因此造成潛在的無線通訊干擾,容易導致網路的傳輸效能降低。同時,由於乘載在D2D及行動用戶裝置的媒體服務頻繁通訊,將面臨裝置能源加速耗盡的問題。因此,為了有效減少物聯網裝置及行動D2D通訊的能耗,第三代合作夥伴計劃(3GPP)定義了非連續接收機制(Discontinuous Reception Mechanism, DRX),其允許裝置關閉無線介面並進入睡眠模式,然而如何最佳化DRX排程同時改善資源效率問題會是該網路上重要議題之一。因此,我們針對下一代網路上提出資源分配與省電排程機制,其包含兩項研究主題,第一個研究主題主要針對在LTE-M物聯網路上的小資料聚合的資源排程與省電議題。第二個研究主題主要是探討D2D與物聯網路共存網路上探討頻譜利用率、資源利用率和省電排程機制的議題。
在第一個研究主題中,我們觀察上行資源分配的問題在LTE-M網路,其中考慮物聯網應用有不同的資料特性,分別是週期性和事件觸發性。在研究中,我們首先說明此問題為NP-complete並提出一個具有聚合效益的DRX省電排程機制(AEDS)。這個方法會利用空間域與時間域的特性同時配合DRX的省電機制來達到聚合資料的效益,具體來說,此方法包含三個步驟。第一步驟其針對週期性(periodic)的資源請求,以靜態(long-term scheduling)配置方式保證週期傳遞性質之小數據資料之延遲性。第二步驟透過DRX的配置,進而減少裝置的功率消耗。第三步驟針對事件觸發性(event-driven)的資源請求,則利用動態(short-term scheduling)配置方式提高小數據的傳遞效益;同時,更進一步考慮裝置資料類型之間的相似性,利用群集方式增強資料的匯集,再透過多躍進(multi-hop)的通訊,提高單位時間傳送的數據量。如此,同時改善了小資料傳輸和省電問題。模擬結果說明了我們提出的方法相較於現有的方法,可以改善資源效益、提高網路能力同時減少功率消耗。
在第二個研究主題中,我們提出一個具能源效率以及裝置睡眠排程的方法,此研究主題主要探討如何妥善分配D2D及行動用戶之上行傳輸資源,除了服務更多的媒體應用外,並確保裝置的服務品質(Quality of Service, QoS),同時減少行動用戶及D2D裝置不必要的耗電。因此,我們提出一個高效且低複雜度的省電排程方法;此方法首先會針對傳輸干擾建立干擾關係圖(Conflict Graph),接著再最大化行動用戶及D2D的無線資源複用(Resource Reuse),如此可提升無線資源的利用率;同時,更利用非連續接收機制(DRX)技術,進一步最佳化省電排程參數,如此可以達成裝置的節能省電效果。根據模擬結果,其顯示我們的方法具有較高的資源利用效能,同時可以有效的提高省電效果。
Machine-to-machine (M2M) and device-to-device (D2D) communication are promising network technologies to realize next generation networks. Since Internet of Things (IoT) applications are mainly for smart sensing, such as metering, home surveillance, disaster detection, and e-health, their special sensing/uploading behaviors will result in periodic and/or event-driven small data transmissions, which may potentially decrease the radio resource efficiency. Due to the frequent communication nature of sensing data for IoT applications, the power consumption is increasing dramatically. On the other hand, intelligent devices such as smart phones and smart tablets are grown and developed rapidly. High-bandwidth media services such as live streaming, gaming and multi-user video conferencing are more and more popular. This results in spectrum resource depletion of the cellular network. To alleviate the problem, 3GPP has proposed a new technology, called device-to-device (D2D) communications. However, D2D devices and direct link cellular users all share and access the same spectrum resource, thus degrading the network performance significantly due to the interference. In addition, due to the frequent communication nature of streaming and gaming services, the power consumption of devices is increasing dramatically. Therefore, to reduce the power consumption of IoT devices, the 3rd Generation Partnership Project (3GPP) has defined the discontinuous reception/discontinuous transmission (DRX/DTX) mechanism to allow devices to turn off their radio interfaces and go to sleep in various patterns. However, how to optimize the DRX scheduling while improving the resource efficiency is still an open issue. Based on the above problems, we propose the resource allocation and power saving in next generation networks, which is composed of two works. The first work discusses the problem of small data aggregation, resource efficiency and power saving in LTE-M IoT networks. The second work discusses the problem of spectrum utilization, resource efficiency and power saving in IoT and D2D networks.

In the first work, we investigate an uplink resource allocation problem over LTE-M which considers the periodic, event-driven, and query-based IoT traffic while minimizing the devices' power consumption. We prove this problem to be NP-complete and propose an aggregation-efficient DRX/DTX scheduling (AEDS) scheme. This scheme takes advantage of both spatial and temporal data aggregation while applying DRX/DTX for energy saving. Specifically, the scheme consists of three phases. The first phase exploits long-term static scheduling for periodic data to ensure the latency and data rate while minimizing the devices' wake-up time. The second phase tries to decrease devices' power consumption through precisely determining their DRX/DTX configurations. Finally, the third phase employs short-term dynamic scheduling for event-driven and query-based data to improve transmission efficiency. Therefore, both small data and power consumption problems are relieved. Extensive simulation results show that the proposed scheme can improve resource efficiency, enlarge network capacity while reducing power consumption compared to the existing schemes.

In the second work, we propose an energy-efficient resource and sleep scheduling scheme. This scheme first establishes a conflict graph to maintain the transmission and interference relationship, and then tries to maximize concurrent D2D and mobile users by resource reuse. At the same time, the method also exploits DRX technology to further decrease possible interference and conserve devices' power consumption through optimizing their sleep operation. In this thesis, we will show how to schedule and allocate radio resource to improve the network throughput and efficiency via more concurrent D2D and direct cellular user communications on the uplink direction and reduce unnecessary power consumption and interference of devices by exploiting DRX/DTX while ensuring their QoS. Simulation results show that our scheme can achieve better performance on system throughput, network capacity, and power saving compared to the existing schemes.
Chinese Abstract i
English Abstract iii
Contents v
List of Figures viii
List of Tables x
1 Introduction 1
2 Overview of LTE-M and D2D networks 5
2.1 LTE-M Network Architecture 5
2.2 D2D Communication Architecture and Procedure 6
2.3 Frame Structures 9
2.4 Discontinuous Reception (DRX) Mechanism 10
2.5 Traffic Features and QoS Requirements 11
2.5.1 M2M communication 11
2.5.2 D2D communication 11
3 Energy-Efficient Scheduling Scheme for Small and Massive Transmis- sions in LTE-M Networks 13
3.1 Motivations 13
3.2 Related Work 14
3.3 Problem Definition 15
3.4 The Proposed Scheme 18
3.4.1 Phase1: Grouping Devices and Initializing Sleep Cycles 18
3.4.2 Phase2: Periodic Traffic Scheduling 24
3.4.3 Phase3: Event-driven and Query-based Traffic Scheduling 25
3.5 Time Complexity Analysis 26
3.6 Performance Evaluation 27
3.6.1 Resource Efficiency 28
3.6.2 Network Capacity 29
3.6.3 Power Saving 31
3.6.4 Observations 33
3.6.4.1 Data Aggregation Efficiency 33
3.6.4.2 Traffic Latency Distribution 33
3.6.4.3 Satisfaction Ratio 34
3.6.4.4 Path Assignment Ratio 35
4 Energy-Efficient DRX Scheduling for D2D Communication 37
4.1 Motivations 37
4.2 Related Work 38
4.3 Problem Definition 39
4.4 The Proposed Scheme 40
4.4.1 Grouping Devices and Initializing Sleep Cycles 41
4.4.2 Resource and Sleep Scheduling for Spatial Reuse Groups 44
4.5 Analysis of Time Complexity 50
4.6 Performance Evaluation 52
4.6.1 System Throughput 53
4.6.2 Number of Served Devices 53
4.6.3 Successful Scheduling Ratio 54
4.6.4 Average Transmission Bit per RB 55
4.6.5 Sleep Ratio 55
4.6.6 Power Consumption 56
4.6.7 Computational Time 57
5 Conclusions 59
Bibliography 61
[1] D. Tsolkas , E. Liotou, N. Passas and L. Merakos, “LTE-A Access, Core, and Protocol Architecture for D2D Communication,” Smart Device to Smart Device Communication, pp. 23–40, 2014.
[2] 3GPP TSG RAN WG2 LTE contribution, R2-071285, “DRX Parameters in LTE,” March 2007.
[3] S. K. Lee, J. G. Koh and C. R. Jung, “An Energy-Efficient QoS-aware Routing Algorithm for Wireless Multimedia Sensor Networks,” International Journal of Multi- media and Ubiquitous Engineering, vol. 9, no. 2, pp. 245–252, 2014.
[4] L. S. Kapov and M. Matijasevic, “Analysis of QoS Requirements for E-Health Services and Mapping to Evolved Packet System QoS Classes,” International Journal of Telemedicine and Applications, vol. 2, pp. 1–18, 2010.
[5] R. Ratasuk, J. Tan and A. Ghosh, “Coverage and Capacity Analysis for Machine Type Communications in LTE,” IEEE Vehicular Technology Conference (VTC), pp. 1–5, 2012.
[6] J. M. Liang, J. J. Chen, H. H. Cheng and Y. C. Tseng, “An Energy-Efficient Sleep Scheduling with QoS Consideration in 3GPP LTE-Advanced Networks for Internet of Things,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 3, no. 1, pp. 13–22, 2013.
[7] 3GPP TS 36.213, “E-UTRA; Physical Layer Procedures,” v14.4.0 (Release 14), September 2017.
[8] 3GPP TS 25.214, “Physical Layer Procedures (FDD),” v15.0.0 (Release 15), September 2017.
[9] 3GPP TS 23.303, “Proximity-Based Services (ProSe); Stage 2,” v15.0.0 (Release 15), June 2017.
[10] P. Gandotra and R. K. Jha, “Device-to-Device Communication in Cellular Networks: A Survey,” Journal of Network and Computer Applications, vol. 71, no. 1, pp. 99– 117, 2016.
[11] K. Zheng and F. Hu, W. Wang and W. Xiang and M. Dohler, “Radio Resource Allocation in LTE-Advanced Cellular Networks with M2M Communications,” IEEE Communications Magazine, vol. 50, no. 7, pp. 184–192, 2012.
[12] S. N. K. Marwat, Y. Zaki, etc, “A Novel Machine-to-Machine Traffic Multiplexing in LTE-A System Using Wireless In-Band Relaying,” Mobile Networks and Management Lecture Notes, vol. 125, pp. 149–158, 2013.
[13] S. Singh, N. Saxena, A. Roy and P. De, “Proximity-Based Video Delivery Architecture for LTE Networks,” Electronics Letters, vol. 52, no. 11, pp. 984–986, 2016.
[14] L. Wang, L. Gao, A. Zhang and M. Chen, “Social-Aware File-Sharing Mechanism for Device-to-Device Communications,” International Conference on Wireless Communications Signal Processing (WCSP), pp. 1–5, 2015.
[15] Y. Cao, C. Long, T. Jiang and S. Mao, “Share Communication and Computation Resources on Mobile Devices: A Social Awareness Perspective,” IEEE Wireless Communications, vol. 23, no. 4, pp. 52–59, 2016.
[16] D. Astely, E. Dahlman, A. Furusk¨ar, Y. Jading, M. Lindstro¨m and S. Parkvall, “LTE: The Evolution of Mobile Broadband,” IEEE Communications Magazine, vol. 47, no. 4, pp. 44–51, 2009.
[17] P. Janis, C. H. Yu, K. Doppler, C. Ribeiro, C. Wijting, K. Hugl, O. Tirkkonen and V. Koivunen, “Device-to-Device Communication Underlaying Cellular Communications Systems,” International Journal of Communications, Network and System Sciences, vol. 2, no. 3, pp. 169–178, 2009.
[18] 3GPP TS 36.843, “Study on LTE Device to Device Proximity Services; Radio aspects,” v12.0.0 (Release 12), March 2014.
[19] Y. Guo, L. Duan and R. Zhang, “Cooperative Local Caching and File Sharing under Heterogeneous File Preferences,” IEEE International Conference on Communications (ICC), pp. 1–6, 2016.
[20] K. Ali, H. X. Nguyen, P. Shah, Q. T. Vien and N. Bhuvanasundaram, “Architecture for Public Safety Network Using D2D Communication,” IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6, 2016.
[21] J. Kim and H. Lee, “Geographical Proximity Based Target-Group Formation Algorithm for D2D Advertisement Dissemination,” IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom), pp. 272–275, 2015.
[22] 3GPP TS 36.321, “E-UTRA; Medium Access Control (MAC) Protocol Specification,” v14.4.0 (Release 14), September 2017.
[23] M. Alasti, B. Neekzad, J. Hui and R. Vannithamby, “Quality of Service in WiMAX and LTE Networks,” IEEE Communications Magazine, vol. 48, no. 5, pp. 104–111, 2010.
[24] X. Lin, J. G. Andrews, A. Ghosh and R. Ratasuk, “An Overview of 3GPP Device-to-Device Proximity Services,” IEEE Communications Magazine, vol. 52, no. 4, pp. 40–48, 2014.
[25] R. S. Y. Luo, P. Hong and K. Xue, “Resource Allocation for Energy Harvesting- Powered D2D Communication Underlaying Cellular Networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 10 486–10 498, 2017.
[26] 3GPP TS 36.877, “LTE Device to Device Proximity Services; User Equipment (UE) radio transmission and reception,” v12.0.0 (Release 12), March 2015.
[27] J. Luo, R. S. Blum, L. 1. Greenstein and A. M. Haimovich, “Link Failure Probabilities for Practical Cooperative Relay Networks,” IEEE Vehicular Technology Conference (VTC), pp. 1489–1493, 2005.
[28] G. A. Elkheir, A. S. Lioumpas and A. Alexiou, “Energy Efficient AF Relaying under Error Performance Constraints with Application to M2M Networks,” International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 56–60, 2011.
[29] D. Zhang, G. Li, K. Zheng, X. Ming, and Z. H. Pan, “An Energy-Balanced Routing Method Based on Forward-Aware Factor for Wireless Sensor Networks,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 766–773, 2014.
[30] H. Li, Y. Cheng, C. Zhou and W. Zhuang, “Routing Metrics for Minimizing End-to-End Delay in Multiradio Multichannel Wireless Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 11, pp. 2293–2303, 2013.
[31] Y. Mehmood, S. N. K. Marwat, C. Gorg, Y. Zaki and A. Timm-Giel, “Evaluation of M2M Data Traffic Aggregation in LTE-A Uplink,” ITG Mobile Communication Conference, 2015.
[32] N. M. Balasubramanya, L. Lampe, G. Vos and S. Bennett, “On Timing Reacquisition and Enhanced Primary Synchronization Signal (ePSS) Design for Energy Efficient 3GPP LTE MTC,” IEEE Transactions on Mobile Computing, vol. 16, no. 8, pp. 2292–2305, 2017.
[33] D. P. Van, B. P. Rimal, S. Andreev, T. Tirronen and M. Maier, “Machine-to-Machine Communications Over FiWi Enhanced LTE Networks: A Power-Saving Framework and End-to-End Performance,” Journal of Lightwave Technology, vol. 34, no. 4, pp. 1062–1071, 2016.
[34] N. Mysore Balasubramanya, L. Lampe, G. Vos and S. Bennett, “DRX With Quick Sleeping: A Novel Mechanism for Energy-Efficient IoT Using LTE/LTE-A,” IEEE Internet of Things Journal, vol. 3, no. 3, pp. 398–407, 2016.
[35] S. C. Jha, A. T. Koc and R. Vannithamby, “Device power saving mechanisms for low cost MTC over LTE networks,” IEEE International Conference on Communications (ICC), pp. 412–417, 2014.
[36] H. Xu, H. Tian, B. Huang and P. Zhang, “An Improved Dynamic User Equipment Power Saving Mechanism for LTE System and Performance Analysis,” Science China Information Sciences, vol. 53, no. 10, pp. 2075–2086, 2010.
[37] K. T. Feng, W. C. Su and Y. P. Yu, “Design and Analysis of Traffic-Based Discontinuous Reception Operations for LTE Systems,” IEEE Transactions on Wireless Communications, vol. 16, no. 12, pp. 8235–8249, 2017.
[38] L. P. Tung, Y. D. Lin, Y. H. Kuo, Y. C. Lai and K. M. Sivalingam, “Reducing power consumption in LTE data scheduling with the constraints of channel condition and QoS,” Computer Networks, vol. 75, no. Part A, pp. 149–159, 2014.
[39] C. W. Chang and J. C. Chen, “UM Paging: Unified M2M Paging with Optimal DRX Cycle,” IEEE Transactions on Mobile Computing, vol. 15, no. 3, pp. 886–900, 2017.
[40] M. Lee and T. Lee, “Energy Harvesting Discontinuous Reception (DRX) Mechanism in Wireless Powered Cellular Networks,” IET Communications, vol. 11, no. 14, pp. 2206–2213, 2017.
[41] G. Tsoukaneri and M. K. Marina, “On Device Grouping for Efficient Multicast Com- munications in Narrowband-IoT,” International Conference on Distributed Computing Systems (ICDCS), pp. 1442–1447, July 2018.
[42] X. Wang and M. Sheng and Y. Lou and Y. Shih and M. Chiang, “Internet of Things Session Management over LTE-Balancing Signal Load, Power, and Delay,” IEEE Internet of Things Journal, vol. 3, no. 3, pp. 339–353, 2016.
[43] S. Xu and Y. Liu and W. Zhang, “Grouping-Based Discontinuous Reception for Massive Narrowband Internet of Things Systems,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1561–1571, 2018.
[44] H. Kellerer, U. Pferschy and D. Pisinger, “Knapsack Problems,” Springer-Verlag, 2004.
[45] A. Aijaz, M. Tshangini, M. R. Nakhai, X. Chu and A. H. Aghvami, “Energy-Efficient Uplink Resource Allocation in LTE Networks with M2M/H2H Co-Existence under Statistical QoS Guarantees,” IEEE Transactions on Communications, vol. 62, no. 7, pp. 2353–2365, 2014.
[46] M. Noura and R. Nordin, “A Survey on Interference Management for Device-to- Device (D2D) Communication and Its Challenges in 5G Networks,” Journal of Net- work and Computer Applications, vol. 71, pp. 130–150, 2016.
[47] P. Gandotraa, R. K. Jhaa, and S. Jain, “A Survey on Device-to-Device (D2D) Communication: Architecture and Security Issues,” Journal of Network and Computer Applications, vol. 78, pp. 9–29, 2017.
[48] M. Ahmada, M. Azamb, M. Naeema, M. Iqbala, A. Anpalaganc, and M. Haneefb, “Resource Management in D2D Communication: An Optimization Perspective,” Journal of Network and Computer Applications, vol. 93, pp. 51–75, 2017.
[49] A. S. Lioumpas and A. Alexiou, “Uplink Scheduling for Machine-to-Machine Communications in LTE-based Cellular Systems,” IEEE Global Communications Conference (GLOBECOM), pp. 353–357, 2011.
[50] J. Gu, H. Yoon, J. Lee, S. Jae Bae and M. Young Chung, “A Resource Allocation Scheme for Device-to-Device Communications using LTE-A Uplink Resources,” ELSEVIER Pervasive and Mobile Computing, vol. 18, no. 3, pp. 104–117, 2015.
[51] J. XUE and B. WEN, “Resource Allocation for Device-to-Device Communication Underlaying LTE Networks,” IEEE Journal of Computational Information Systems, vol. 11, pp. 75–86, 2015.
[52] M. Hajiaghayi, C. Wijting, C. Ribeiro and M. T. Hajiaghayi, “Efficient and Practical Resource Block Allocation for LTE-based D2D Network via Graph Coloring,” Wireless Networks, vol. 20, no. 4, pp. 611–624, 2014.
[53] Z. Zhang, R. Q. Hu, Y. Qian and A. Papathanassiou, “D2D Communication Underlay in Uplink Cellular Networks with Fractional Power Control and Fractional Frequency Reuse,” IEEE Global Communications Conference (GLOBECOM), pp. 1–7, 2015.
[54] Y. V. L. de Melo, R. L. Batista, C. F. M. e Silva, T. F. Maciel, J. M. B. da Silva and F. R. P. Cavalcanti, “Uplink Power Control with Variable Target SINR for D2D Communications Underlying Cellular Networks,” IEEE Vehicular Technology Conference (VTC), pp. 1–5, 2015.
[55] Y. V. L. de Melo, R. L. Batista, C. F. M. e. Silva, T. F. Maciel, J. M. B. da Silva and F. R. P. Cavalcanti, “Power Control Schemes for Energy Efficiency of Cellular and Device-and-Device Communications,” IEEE Wireless Communications and Networking Conference (WCNC), pp. 1690–1694, 2015.
[56] A. Asheralieva and Y. Miyanaga, “QoS-Oriented Mode, Spectrum, and Power Allocation for D2D Communication Underlaying LTE-A Network,” IEEE Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9787–9800, 2016.
[57] J. Han, Q. Cui, C. Yang, M. Valkama and X. Tao, “Optimized Power Allocation and Spectrum Sharing in Device to Device Underlaying Cellular Systems,” IEEE Wireless Communications and Networking Conference (WCNC), pp. 1332–1337, 2014.
[58] A. Sultana, L. Zhao, S. Member, and X. Fernando, “Efficient Resource Allocation in Device-to-Device Communication Using Cognitive Radio Technology,” IEEE Trans- actions on Vehicular Technology, vol. 66, no. 11, pp. 10 024–10 034, 2017.
[59] J.-M. Liang, J.-J. Chen, P.-C. Hsieh, and Y.-C. Tseng, “Two-Phase Multicast DRX Scheduling for 3GPP LTE-Advanced Networks,” IEEE Transactions on Mobile Com- puting, vol. 15, no. 7, pp. 1839–1849, 2016.
[60] NS-3 Consortium. (2018) ns-3 network simulator. [Online]. Available: https:
//www.nsnam.org/
[61] T. Deng, X. Wang, P. Fan, and K. Li, “Modeling and Performance Analysis of Tracking Area List-based Location Management Scheme in LTE Networks,” IEEE Transactions on Vehicular Technology, vol. 65, no. 8, pp. 6417–6431, 2016.
電子全文 電子全文(網際網路公開日期:20220331)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔