跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/04 04:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李宥霆
研究生(外文):Lee, You-Ting
論文名稱:運用遠程電漿處理於氧化鉿基鐵電記憶體之鐵電特性研究
論文名稱(外文):Investigation on Ferroelectric Characterization of Hafnium-Oxide-Based Ferroelectric Memories with Remote Plasma Treatments
指導教授:張俊彥藍宇彬
指導教授(外文):Chang, Chun-YenLan, Yu-Pin
口試委員:張俊彥藍宇彬林建中鄭淳護
口試委員(外文):Chang, Chun-YenLan, Yu-PinLin, Chien-ChungCheng, Chun-Hu
口試日期:2018-08-15
學位類別:碩士
校院名稱:國立交通大學
系所名稱:照明與能源光電研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:77
中文關鍵詞:遠程電漿氧化鉿基鐵電材料鐵電記憶體
外文關鍵詞:remote plasmahafnium-oxide-based ferroelectric materialferroelectric memories
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
現今記憶體製造工藝中,隨著物聯網與大數據處理的時代來臨,傳統記憶體正面臨許多問題與挑戰,例如隨機動態記憶體的漏電問題與快散記憶體的耐久性問題,雖然出現了許多新穎的替代品,但同時考量到低功耗、快速切換、高耐久性與長時間保持資料的特性,不得不提到以鐵電材料沉積的鐵電記憶體。
近年來新興的鐵電材料克服了傳統鐵電材料(PZT、SBT…)面臨的無法微縮與環境汙染的困境,並且延續了傳統鐵電材料的優點。然而新興鐵電材料沉積於緩衝層上卻出現了挑戰,當緩衝層越薄,鐵電材料極化能力越強,卻也更容易產生缺陷,影響介面處鍵結,使漏電流上升。因此,本論文提出混和雙層新穎鐵電材料(HfO2/ZrO2)並結合約1奈米緩衝層與運用遠程電漿預處理來改善介面處與薄膜內的缺陷,達到降低漏電流以維持高耐久性的操作。
耐久性的操作是根據深層的氧空缺在高次數的操作下被誘發,形成瞬間大電壓,導致元件絕緣層被擊穿的當下操作次數所定義。然而不同的電漿預處理也能達到不同的修補特性,本研究提出氧電漿、氮電漿與氟電漿預處理來面臨不同的應用。氧處理與氮處理在低溫退火之下能有效降低漏電流,但在高溫退火下熱穩定性較差,因此較適合運用於低溫製程。相反的遠程氟電漿預處理能在高溫退火之下同時填補氧空缺,降低漏電,且達到高耐久性的測試,因此未來適合應用於高溫製程下之嵌入式隨機動態記憶體。
In today's memory manufacturing process, with the advent of the Internet of Things (IoT) and Big Data era coming, traditional memory is facing many problems and challenges, such as the leakage of DRAM and the endurance of flash memory. Considering the characteristics of low power consumption, fast switching, high endurance and long-term retention of data, it is necessary to mention ferroelectric memory.
In recent years, the novel ferroelectric materials have overcome the scaling and environmental pollution challenge of traditional ferroelectric materials like PZT and SBT. However, the novel ferroelectric material deposited on the buffer layer is encountered a bottleneck. Although scaling the buffer layer can obtain stronger polarization, but it causes serious defects affecting the interface bonding and causing the severe leakage current. Therefore, we propose to mix two-layer novel ferroelectric materials (HfO2/ZrO2) and combine about 1-nm buffer layer with remote plasma pre-treatment to improve defects in the interface and film to reduce leakage current to maintain high endurance operation.
The endurance test is defined by the number of current cycling operations, which can induce deep oxygen vacancies under cycling and lead a large instantaneous bias to break down the insulator layer. However, the interfacial layer (IL) with different plasma pre-treatment will achieve different device characteristics. This study proposes that oxygen plasma, nitrogen plasma and fluorine plasma pre-treatment are adopted in different applications. Oxygen treatment and nitrogen treatment can effectively reduce leakage current under low temperature annealing, but the thermal stability is poor under high temperature annealing, so it is suitable for low temperature process. On the other hands, the remote fluorine plasma pre-treatment can fill oxygen vacancies under high temperature annealing to reduce leakage current and achieve better endurance performance. Therefore, it is suitable for embedded DRAM in high temperature process in the future.
摘要 i
ABSTRACT iii
ACKNOWLEDGEMENTS v
CONTENTS vi
FIGURE CAPTIONS viii
TABLE CAPTIONS xvi
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.1.1 Challenge of Conventional Memory 1
1.1.2 The Polarization Switching in FeRAM 2
1.1.3 Various Type of FeRAM 4
1.2 Characteristics of Ferroelectric Material 6
1.2.1 A Novel HfO2-base Ferroelectric Material 6
1.2.2 Ferroelectricity of HfxZr1-xO2 Film 9
1.3 Motivation 11
CHAPTER 2 LITERATURE REVIEW 14
2.1 Different Plasma Classification 14
2.1.1 Direct Plasma for Improving Film Quality and Reliability 15
2.1.2 Remote Plasma for Improving Film Quality and Reliability 19
CHAPTER 3 EXPERIMENTAL PROCEDURE 22
3.1 Device Fabrication 22
3.2 Material and Electrical Analysis 23
3.2.1 TEM and EDS Analysis 23
3.2.2 Endurance Cycling Measurement 25
CHAPTER 4 RESULTS AND DISCUSSIONS 27
4.1 Pre-remote Oxygen Plasma Treatment for FeRAM 28
4.2 Pre-remote Nitrogen Plasma Treatment for FeRAM 38
4.3 Pre-remote Fluorine Plasma Treatment for FeRAM 48
4.4 Compare with Different Remote Plasma Treatment 64
CHAPTER 5 CONCLUSION 69
FUTURE WORK 70
REFERENCES 71
個人簡歷(Vita) 77
[1] Siva Sivaram, Western Digital. Storage Class Memory: Learning from 3D NAND (2016) [Online]. Available: https://www.flashmemorysummit.com
[2] Milan Pešić et al., “How to make DRAM non-volatile? Anti-ferroelectrics: A new paradigm for universal memories”, IEEE International Electron Devices Meeting, page: 11.6.1-11.6.4, Dec. 2016.
[3] Shimeng Yu et al., “Emerging Memory Technologies: Recent Trends and Prospects”, IEEE Solid-State Circuits Magazine, volume 8, issue 2, page 43-56, Spring 2016.
[4] Tetsuo Endoh et al., “An Overview of Nonvolatile Emerging Memories— Spintronics for Working Memories”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, volume 6, issue 2, page 109-119, June 2016.
[5] A. Sheikholeslami et al., “A survey of circuit innovations in ferroelectric random-access memories”, Proceedings of the IEEE, volume 88, issue 5, page 667-689, May 2000.
[6] Claude Ederer et al., “Effect of Epitaxial Strain on the Spontaneous Polarization of Thin Film Ferroelectrics’, PHYSICAL REVIEW LETTERS, volume 95, issue 25, Dec. 2005.
[7] T. S. Böscke et al., “Ferroelectricity in hafnium oxide thin films”, APPLIED PHYSICS LETTERS, volume 99, issue 10, August 2011.
[8] HS Yu, “Performance Evaluation and Improvement of Ferroelectric Field-Effect Transistor Memory”, UCLA Electronic Theses and Dissertations 2015.
[9] Yoshihiro Arimoto et al.,” Current Status of Ferroelectric Random-Access Memory”, MRS Bulletin, volume 29, issue 11, page 823-828, November 2004.
[10] J. Müller et al., “Ferroelectric Hafnium Oxide Based Materials and Devices: Assessment of Current Status and Future Prospects”, ECS Journal of Solid State Science and Technology, volume 4, issue 5, page 30-35, 2015.
[11] Zhen Fan et al., “Ferroelectric HfO2-based materials for next-generation ferroelectric memories”, Journal of ADVANCED DIELECTRICS, volume 6, No. 2, page 1630003-1~1630003-11, May 2016.
[12] Ekaterina Yurchuk et al., “Impact of Scaling on the Performance of HfO2-Based Ferroelectric Field Effect Transistors”, IEEE Transactions on Electron Devices, volume 61, issue11, page 3699-3706, Nov. 2014.
[13] T. S. Böscke et al., “Ferroelectricity in Hafnium Oxide: CMOS compatible Ferroelectric Field Effect Transistors”, IEEE International Electron Devices Meeting, January 2012.
[14] Johannes Müller et al., “Ferroelectric Hafnium Oxide A Game Changer to FRAM?”, IEEE Annual Non-Volatile Memory Technology Symposium (NVMTS), March 2015.
[15] J. Müller et al., “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications”, Applied Physics Letters, volume 99, issue 11, August 2011.
[16] Yu-Chien Chiu et al., “Low Power 1T DRAM/NVM Versatile Memory Featuring Steep Sub-60-mV/decade Operation, Fast 20-ns Speed, and Robust 85oC-Extrapolated 1016 Endurance”, Symposium on VLSI Technology, 2015.
[17] Min Hyuk Park et al., “Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature”, Applied Physics Letters, volume 102, issue 24, June 2013.
[18] Min Hyuk Park et al., “The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity”, Applied Physics Letters, volume 104, issue 7, February 2014.
[19] Golnaz Karbasian et al., “Ferroelectricity in HfO2 thin films as a function of Zr doping”, IEEE VLSI-TSA, June 2017.
[20] J. Müller et al., “Ferroelectricity in Simple Binary ZrO2 and HfO2”, Nano Letters 12, 8, page 4318-4323, July 2012.
[21] Karine Florent et al., “Reliability Study of Ferroelectric Al:HfO2 Thin Films for DRAM and NAND Applications”, IEEE Transactions on Electron Devices, volume 64, issue 10, Oct. 2017.
[22] Chia-Chi Fan et al., “Interface engineering of ferroelectric negative capacitance FET for hysteresis-free switch and reliability improvement”, IEEE International Reliability Physics Symposium, May 2018.
[23] Chia-Chi Fan et al., “Energy-efficient HfAlOxNCFET: Using gate strain and defect passivation to realize nearly hysteresis-free sub-25mV/dec switch with ultralow leakage”, IEEE International Electron Devices Meeting, January 2018.
[24] Chao Sung Lai et al., “Suppression of interfacial reaction for HfO2 on silicon by pre-CF4 plasma treatment”, Applied Physics Letters, volume 89, issue 7, June 2006.
[25] Kai Ni et al., “Critical Role of Interlayer in Hf0.5Zr0.5O2Ferroelectric FET Nonvolatile Memory Performance”, IEEE Transactions on Electron Devices, volume 65, issue 6, page 2461-2469, April 2018.
[26] M. Trentzsch et al., “A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs”, IEEE International Electron Devices Meeting, February 2017.
[27] Harald Benjamin Profijt et al., “Ion Bombardment during Plasma-Assisted Atomic Layer Deposition”, EDS Transactions, volume 50, issue 13, page 23-34, 2012.
[28] Wang Chen et al., “Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma”, Applied Surface Science, volume 254, issue 9, page 2882-2888, February 2008.
[29] Woei-Cherng Wu et al., “Fluorinated HfO2 gate dielectrics engineering for CMOS by pre- and post-CF4 plasma passivation”, IEEE International Electron Devices Meeting, February 2009.
[30] Chen-Jie Wang et al., “Performance improvement for Metal/Al2O3/HfO2/SiO2/Si structure nonvolatile flash memory by fluorine plasma treatment”, IEEE International Conference on Solid-State and Integrated Circuit Technology, February 2013.
[31] Kow-Ming Chang et al., “Improvement on Interface Quality and Reliability Properties of HfAlOx MIS Capacitor with Dual Plasma Treatment”, EDS Transactions, volume 45, issue 3, page 167-174, 2012.
[32] Le Van Hai et al., “Data retention time of MFIS-FET memory structure improved with nitrogen and oxygen radical irradiation treatment”, IEEE International Conference on Communications and Electronics, April 2007.
[33] Kuen-Yi Chen et al., “Impact of Plasma Treatment on Reliability Performance for HfZrOx-Based Metal-Ferroelectric-Metal Capacitors”, IEEE Electron Device Letters, volume 39, issue 1, page 87-90, 2017.
[34] H. K. Jang et al., “Oxygen plasma effects on sol-gel-derived lead-zirconate-titanate thin films”, APL, volume 76, Issue 7, February 2000.
[35] Ching-Chich Leu et al., “Effects of O2 plasma treatment on the electric and dielectric characteristics of Ba0.7Sr0.3TiO3 thin films”, Microelectronics Reliability, volume 40, Issue 4-5, April 2000.
[36] D. Adam Hook et al., “Evaluation of Oxygen Plasma and UV Ozone Methods for Cleaning of Occluded Areas in MEMS Devices”, IEEE Microelectromechanical Systems, volume 19, Issue 6, Dec. 2010.
[37] Horng Nan Chern et al., “The effects of fluorine passivation on polysilicon thin-film transistors”, IEEE Transactions on Electron Devices, volume 41, issue 5, May 1994.
[38] Tingting Jia et al., “Switching of both local ferroelectric and magnetic domains in multiferroic Bi0.9La0.1FeO3 thin film by mechanical force”, SCIENTIFIC REPORTS, August 2016.
[39] Dongpo Song et al., “Retention Characteristics of Five‐Layered Aurivillus Films with Large Polarization”, Rapid Research Letters, volume 11, issue 11, September 2017.
[40] S. Q. Wang et al., “Reactions of Zr thin films with SiO2 substrates”, Applied Physics, volume 64, issue 9, July 1988.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top