(3.237.20.246) 您好!臺灣時間:2021/04/15 09:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏子翔
研究生(外文):Yen,Tzu-Hsiang
論文名稱:透過現場可程式化邏輯閘陣列設計基於穩態視覺誘發電位腦機介面
論文名稱(外文):Design of Wearable Steady State Visually Evoked Potential-based Brain Computer Interface by Using Field Programmable Gate Array
指導教授:林伯昰
指導教授(外文):Lin, Bor-Shyh
口試委員:林伯星蘇海清詹明哲林伯昰
口試委員(外文):Lin, Bor-ShingSu, Hai-ChingChan, Ming-CheLin, Bor-Shyh
口試日期:2018-11-02
學位類別:碩士
校院名稱:國立交通大學
系所名稱:照明與能源光電研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:30
中文關鍵詞:腦機介面穩態視覺誘發電位現場可程式化邏輯閘陣列快速傅立葉轉換
外文關鍵詞:brain-computer interfacesteady state visually evoked potentialsfield programmable gate arrayfast Fourier transform
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要..................................................i
Abstract..............................................iii
誌 謝..................................................v
Content................................................vi
List of Figs..........................................vii
List of Tables.......................................viii
Chapter 1 Introduction..................................1
1.1. Background.........................................1
1.2. Previous research..................................2
1.3. Motivation.........................................4
1.4. Organization structure of thesis...................5
Chapter 2 Methods.......................................6
2.1 Basic Scheme of FPGA-based SSVEP BCI................6
2.2 Active dry EEG electrodes and wearable mechanical design..................................................8
2.3 FPGA-based BCI module..............................11
2.4 Visual stimuli device..............................13
2.5 Fast Fourier Transform Algorithm...................14
2.6 Implementation of SSVEP BCI Algorithm in FPGA......16
Chapter 3 Results......................................20
3.1 Performance of proposed system on detecting SSVEP..20
3.2 Results analysis and information transfer rate of proposed system........................................21
Chapter 4 Discussions..................................23
Chapter 5 Conclusions..................................26
References.............................................27
[1] M. A. Lebedev and M. A. Nicolelis, "Brain–machine interfaces: past, present and future," Trends in Neurosciences, vol. 29, pp. 536-546, 2006.
[2] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, "Brain–computer interfaces for communication and control," Clinical Neurophysiology, vol. 113, no. 6, pp. 767-791, 2002.
[3] A. Kostov and M. Polak, "Parallel man-machine training in development of EEG-based cursor control," IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 203-205, 2000.
[4] M. Middendorf, G. McMillan, G. Calhoun, and K. S. Jones, "Brain-computer interfaces based on the steady-state visual-evoked response," IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 211-214, 2000.
[5] T.M. Vaughan, D.J. McFarland, G. Schalk, W.A. Sarnacki, D.J. Krusienski, E.W. Sellers, and J.R. Wolpaw, "The wadsworth BCI research and development program: at home with BCI," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 229-233, 2006.
[6] J. V. Odom, M. Bach, C. Barber, M. Brigell, M. F. Marmor, A. P. Tormene, G. E. Holder and, Vaegan, "Visual evoked potentials standard," Documenta Ophthalmologica, vol. 108, no. 2, pp. 115-123, 2004.
[7] N. Birbaumer, A. Kubler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor, "The thought translation device (TTD) for completely paralyzed patients," IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 190-193, 2000.
[8] G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer, "EEG-based discrimination between imagination of right and left hand movement," Electroencephalography and Clinical Neurophysiology, vol. 103, no. 6, pp. 642-651, 1997.
[9] E. Donchin, K. M. Spencer, and R. Wijesinghe, "The mental prosthesis: assessing the speed of a P300-based brain-computer interface," IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 174-179, 2000.
[10] J. R. Wolpaw, H. Ramoser, D. J. McFarland, and G. Pfurtscheller, "EEG-based communication: improved accuracy by response verification," IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 3, pp. 326-333, 1998.
[11] F. B. Vialatte, M. Maurice, J. Dauwels, and A. Cichocki, "Steady-state visually evoked potentials: focus on essential paradigms and future perspectives," Progress in Neurobiology, vol. 90, no. 4, pp. 418-438, 2010.
[12] D. Zhu, J. Bieger, G. G. Molina, and R. M. Aarts, "A survey of stimulation methods used in SSVEP-based BCIs," Computational Intelligence and Neuroscience, vol. 2010, p. 1, 2010.
[13] M. A. Lopez-Gordo, A. Prieto, F. Pelayo, and C. Morillas, "Customized stimulation enhances performance of independent binary SSVEP-BCIs," Clinical Neurophysiology, vol. 122, no. 1, pp. 128-133, 2011.
[14] S. A. Hillyard, H. Hinrichs, C. Tempelmann, S. T. Morgan, J. C. Hansen, H. Scheich, and H. J. Heinze, "Combining steady‐state visual evoked potentials and f MRI to localize brain activity during selective attention," Human brain mapping, vol. 5, no. 4, pp. 287-292, 1997.
[15] M. Cheng, X. Gao, S. Gao, and D. Xu, "Design and implementation of a brain-computer interface with high transfer rates," IEEE Transactions on Biomedical Engineering, vol. 49, no. 10, pp. 1181-1186, 2002.
[16] G. R. Muller-Putz and G. Pfurtscheller "Control of an electrical prosthesis with an SSVEP-based BCI," IEEE Transactions on Biomedical Engineering, vol. 55, no. 1, pp. 361-364, 2008.
[17] Y. Wang, W. Pei, K. Guo, Q. Gui, X. Li, H. Chen, and J. Yang "Dry electrode for the measurement of biopotential signals," Science China Information Sciences, vol. 54, no. 11, pp. 2435, 2011.
[18] F. Duan, D. Lin, W. Li, and Z. Zhang, "Design of a multimodal EEG-based hybrid BCI system with visual servo module," IEEE Transactions on Autonomous Mental Development, vol. 7, no. 4, pp. 332-341, 2015.
[19] M. Wang, R. Li, R. Zhang, G. Li, and D. Zhang, "A Wearable SSVEP-Based BCI System for Quadcopter Control Using Head-Mounted Device," IEEE Access, vol. 6, pp. 26789-26798, 2018.
[20] J. S. Lin and W. C. Wu, "An FPGA-based BCI system with SSVEP and phased coding techniques," Journal of Technology, vol. 33, no. 1, pp. 53-62, 2018.
[21] L. J. Trejo, R. Rosipal, and B. Matthews, "Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 225-229, 2006.
[22] N. R. Galloway, " Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine," The British Journal of Ophthalmology, vol. 74, no. 4, p. 255, 1990.
[23] C. T. Lin, L. D. Liao, Y. H. Liu, I. J. Wang, B. S. Lin, and J. Y. Chang, "Novel dry polymer foam electrodes for long-term EEG measurement," IEEE Transactions on Biomedical Engineering, vol. 58, no. 5, pp. 1200-1207, 2011.
[24] L. Beckmann, C. Neuhaus, G. Medrano, N. Jungbecker, M. Walter, T. Gries, and S. Leonhardt, "Characterization of textile electrodes and conductors using standardized measurement setups," Physiological Measurement, vol. 31, no. 2, p. 233, 2010.
[25] W. T. Cochran, J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel, W. W. Lang, G. C. Maling, D. E. Nelson, C. M. Rader, and P. D. Welch, "What is the fast Fourier transform?," Proceedings of the IEEE, vol. 55, no. 10, pp. 1664-1674, 1967.
[26] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Mathematics of Computation, vol. 19, no. 90, pp. 297-301, 1965.
[27] Z. Wu, Y. Lai, Y. Xia, D. Wu, and D. Yao, "Stimulator selection in SSVEP-based BCI," Medical Engineering & Physics, vol. 30, no. 8, pp. 1079-1088, 2008.
[28] C. C. Lo, T. Y. Chien, Y. C. Chen, S. H. Tsai, W. C. Fang, and B. S. Lin, "A wearable channel selection-based brain-computer interface for motor imagery detection," Sensors, vol. 16, no. 2, p. 213, 2016.
[29] X. Gao, D. Xu, M. Cheng, and S. Gao, "A BCI based environmental controller for the motion-disabled," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 137-140, 2003.
[30] P. Yuan, X. Gao, B. Allison, Y. Wang, G. Bin, and S. Gao, "A study of the existing problems of estimating the information transfer rate in online brain–computer interfaces," Journal of Neural Engineering, vol. 10, no. 2, p. 026014, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔