跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 16:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫瑞璟
研究生(外文):Sun, Jui-Jing
論文名稱:電動機車快遞服務車輛排程最佳化問題
論文名稱(外文):Optimal Scheduling Problem for Express Delivery Services Using E-scooters
指導教授:盧宗成盧宗成引用關係
指導教授(外文):Lu, Chung-Cheng
口試委員:顏上堯陳俊穎
口試委員(外文):Yan, Shang-YaoChen, Chun-Ying
口試日期:2019-06-19
學位類別:碩士
校院名稱:國立交通大學
系所名稱:運輸與物流管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:54
中文關鍵詞:機車快遞服務電動機車時空網路車輛排程問題啟發式解法
外文關鍵詞:express delivery serviceselectric scooterstime-space networkvehicle scheduling problemheuristic algorithm
相關次數:
  • 被引用被引用:2
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
宅配與快遞物流業者於都會區內發展機車快遞服務,提供高便利性、高時效性與戶對戶之服務,以因應B2C和C2C之消費型式,而隨著全球環保意識高漲,在政府積極推廣低碳運具使用下,物流業者逐漸嘗試建立綠能車隊,採用電動機車進行配送工作。然而,目前實務上多數機車快遞業者在進行車輛作業規劃時,仍仰賴快遞員之配送經驗,採用人工指派之方式,但此方法較費時、費力,且當業者採用電動機車執行配送任務時,須額外考量車輛之行駛里程限制以及補充電量問題,若仍透過人工指派方式將更為複雜及困難,且無法求得最佳化規劃結果。
因此,本研究針對機車專件快遞服務,即快遞員至需求之指定地點取貨後,直接送往指定配送地點之服務型式,從機車快遞服務業者之立場,利用時空網路流動技巧,以最小化總營運成本為目標,考慮電動車輛剩餘電量、充電站位置等限制條件,建構一電動機車快遞服務車輛排程模式。而由於本研究所建構之模式屬於整數多商品網路流量問題,為了提高求解大規模範例時之效率,研究以問題分解技巧為基礎之啟發式解法,搭配Gurobi最佳化軟體進行求解,並參考國內某機車快遞業者之訂單資料,設計不同情境之範例,以測試模式與啟發式解法之實用性。測驗結果得知,利用啟發式解法對不同情境之範例進行求解,皆能於30分鐘內求得和Gurobi軟體得到之下限解差距在8%內之啟發解,顯示本研究之模式與啟發式解法能有效應用於實務上。研究結果可提供機車快遞服務業者作為未來採用電動機車進行專件配送時之參考。
In response to B2C and C2C business models, courier service providers adopt scooters for express delivery service in metropolitan areas, which increases convenience and timeliness for delivery. Besides, along with the growth of environmental awareness, the government actively promote low-carbon transport, which makes courier service providers gradually replace petroleum motorcycles with electric scooters to achieve green logistics. However, courier services providers will need to consider vehicle mileage range and the location of charging stations when planning the routing of a fleet of e-scooters. Therefore, the study addresses the optimization problem of scheduling a fleet of e-scooters that are assigned for paired pickup and delivery services. The study proposes an optimization model which is developed based on the time-space network. The objective is to minimize service providers’ total operating cost subject to a set of operating constraints for e-scooters. The model is formulated as an integer multiple-commodity network flow problem, which is characterized as NP-hard. Hence, the study develops a decomposition-based heuristic, with the assistance of the mathematical problem solver, Gurobi, to efficiently solve the problem with practical sizes. Test instances are generated based on the data provided by a Taiwan courier service provider, in order to evaluate the efficiency and effectiveness of the proposed model and the heuristic algorithm. The result shows that the heuristic algorithm takes within 30 minutes to complete the solution process. In addition, the gaps between heuristic solutions and lower bounds that are obtained by Gurobi are less than 8%. As a result, it is shown that the proposed model and heuristic algorithm are effective planning tools for scheduling a fleet of e-scooters that are appointed for paired pickup and delivery services.
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 2
1.4 研究方法與流程 3
第二章 文獻回顧 5
2.1 城市物流 5
2.2 宅配業與快遞業現況 7
2.2.1 宅配業與快遞業之比較 7
2.2.2 機車宅配與快遞業現況 8
2.3 綠色車輛配送相關文獻 10
2.4 車輛途程問題相關文獻 11
2.4.1 車輛途程問題 11
2.4.2 替代能源車輛途程問題 12
2.4.3 電動車輛途程問題 13
2.5 時空網路相關文獻 17
2.6 小結 20
第三章 模式建構 22
3.1 問題描述 22
3.1.1 假設條件 23
3.1.2 配送需求時空網路 24
3.2 電動機車時空網路 24
3.3 電動機車快遞服務車輛排程模式 28
3.4 小範例測試 30
3.4.1 參數設定 30
3.4.2 小範例測試結果 31
3.5 啟發式解法 33
第四章 範例測試 37
4.1 範例設計 37
4.1.1 配送路網規劃 37
4.1.2 電動機車相關參數設定 37
4.1.3 配送需求設定 39
4.1.4 模式輸出資料與環境設定 39
4.2 範例測驗結果 40
4.2.1 啟發式解法求解效果 40
4.2.2 情境一求解結果 43
4.2.3 情境二求解結果 44
4.2.4 情境三求解結果 45
4.3 敏感度分析 46
4.3.1 訂單量 47
4.3.2 車輛續航里程 48
4.3.3 發車成本 49
第五章 結論與建議 50
5.1 結論 50
5.2 未來研究方向與建議 51
參考文獻 52
1. 吳銘偉 (2010)。保全公司運鈔車護運作業排程規劃之研究。國立中央大學土木工程研究所碩士論文,桃園縣。
2. 林韋捷 (2015)。公共電動車系統車輛配置最佳化模式。國立臺北科技大學資訊與財金管理系研究所碩士論文,台北市。
3. 張朝能、翁美娟 (2014年2月)。台灣汽車貨運業之現狀與未來發展趨勢。物流技術與戰略雜誌,第67期。
4. 楊瑞宇 (2012)。穩健公共自行車租用系統車輛配置模式。國立臺北科技大學資訊與運籌管理研究所碩士論文,台北市。
5. 楊孟軒 (2015)。城市物流之快遞服務任務指派模式。國立交通大學運輸與物流管理學系研究所碩士論文,新竹市。
6. AustriaTech. (2014). Electric fleets in urban logistics: Improving urban freight efficiency in small and medium-sized historic towns. Retrieved from https://www.bmvit.gv.at/verkehr/elektromobilitaet/downloads/emobil_urbanlogistics_annex.pdf
7. Bunte, S., & Kliewer, N. (2009). An overview on vehicle scheduling models. Public Transport, 1(4), 299-317.
8. Buhrkal, K., Larsen, A., & Ropke, S. (2012). The Waste Collection Vehicle Routing Problem with Time Windows in a City Logistics Context. Procedia - Social and Behavioral Sciences, 39, 241-254.
9. Browne, M., Allen, J., Nemoto, T., Patier, D., & Visser, J. (2012). Reducing social and environmental impacts of urban freight transport: A review of some major cities. Procedia-Social and Behavioral Sciences, 39, 19-33.
10. Barco, J., Guerra, A., Munoz, L., & Quijano, N. (2017). Optimal Routing and Scheduling of Charge for Electric Vehicles: A Case Study. Mathematical Problems in Engineering, 2017, 16.
11. Conrad, R. G., & Figliozzi, M. A. (2011). The recharging vehicle routing problem. In T. Doolen, & E. VanAken (Eds.), Proceedings of the 2011 industrial engineering research conference. USA: Reno.
12. Choubassi, C., Seedah, D. P. K., Jiang, N., & Walton, C. M. (2016). Economic Analysis of Cargo Cycles for Urban Mail Delivery. Transportation Research Record: Journal of the Transportation Research Board, 2547, 102-110.
13. Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management science, 6(1), 80-91.
14. Dablanc, L., Giuliano, G., Holliday, K., & O'Brien, T. (2013). Best Practices in Urban Freight Management. Transportation Research Record: Journal of the Transportation Research Board, 2379, 29-38.
15. Erdoğan, S., & Miller-Hooks, E. (2012). A Green Vehicle Routing Problem. Transportation Research Part E: Logistics and Transportation Review, 48(1), 100-114.
16. Ecommerce Foundation. (2017). Global B2C Ecommerce Country Report 2017. Retrieved from https://www.ecommercefoundation.org/free-reports
17. Felipe, Á., Ortuño, M. T., Righini, G., & Tirado, G. (2014). A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges. Transportation Research Part E: Logistics and Transportation Review, 71, 111-128.
18. Gintner, V., Kliewer, N., & Suhl, L. (2005). Solving large multiple-depot multiple-vehicle-type bus scheduling problems in practice. OR Spectrum, 27(4), 507-523.
19. Hof, J., Schneider, M., & Goeke, D. (2017). Solving the battery swap station location-routing problem with capacitated electric vehicles using an AVNS algorithm for vehicle-routing problems with intermediate stops. Transportation Research Part B: Methodological, 97, 102-112.
20. Kliewer, N., Mellouli, T., & Suhl, L. (2006). A time–space network based exact optimization model for multi-depot bus scheduling. European Journal of Operational Research, 175(3), 1616-1627.
21. Keskin, M., & Çatay, B. (2016). Partial recharge strategies for the electric vehicle routing problem with time windows. Transportation Research Part C: Emerging Technologies, 65, 111-127.
22. Lenz, B., & Riehle, E. (2013). Bikes for Urban Freight? Experience in Europe. Transportation Research Record, 2379(1), 39-45.
23. Lu, C.-C., Yan, S., & Huang, Y.-W. (2018). Optimal scheduling of a taxi fleet with mixed electric and gasoline vehicles to service advance reservations. Transportation Research Part C: Emerging Technologies, 93, 479-500.
24. Muñuzuri, J., Larrañeta, J., Onieva, L., & Cortés, P. (2005). Solutions applicable by local administrations for urban logistics improvement. Cities, 22(1), 15-28.
25. Mahmoudi, M., & Zhou, X. (2016). Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations. Transportation Research Part B: Methodological, 89, 19-42
26. Montoya, A., Guéret, C., Mendoza, J. E., & Villegas, J. G. (2016). A multi-space sampling heuristic for the green vehicle routing problem. Transportation Research Part C: Emerging Technologies, 70, 113-128.
27. Nocerino, R., Colorni, A., Lia, F., & Luè, A. (2016). E-bikes and E-scooters for Smart Logistics: Environmental and Economic Sustainability in Pro-E-bike Italian Pilots. Transportation Research Procedia, 14, 2362-2371.
28. Pelletier, S., Jabali, O., & Laporte, G. (2016). 50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives. Transportation Science, 50(1), 3-22.
29. Schneider, M., Stenger, A., & Goeke, D. (2014). The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations. Transportation Science, 48(4), 500-520.
30. Savelsbergh, M., & Woensel, T. V. (2016). 50th Anniversary Invited Article—City Logistics: Challenges and Opportunities. Transportation Science, 50(2), 579-590.
31. Schiffer, M., & Walther, G. (2017). The electric location routing problem with time windows and partial recharging. European Journal of Operational Research, 260(3), 995-1013.
32. United Nations. (2018). World urbanization prospects: the 2018 revision. New York: Department of Economic and Social Affairs, Population Division.
33. Wang, I.-L. (2008). Distribution of small packages in metropolitan area by motorcycle courier services. International Journal of Integrated Supply Management, 4(1), 88-101.
34. Wang, H., & Cheu, R. L. (2013). Operations of a Taxi Fleet for Advance Reservations Using Electric Vehicles and Charging Stations. Transportation Research Record, 2352(1), 1-10.
35. Yan, S., & Chen, C.-Y. (2011). An optimization model and a solution algorithm for the many-to-many car pooling problem. Annals of Operations Research, 191(1), 37-71.
36. Yan, S., Lin, C.-K., & Chen, S.-Y. (2014). Logistical support scheduling under stochastic travel times given an emergency repair work schedule. Computers & Industrial Engineering, 67, 20-35.
37. Yang, J., & Sun, H. (2015). Battery swap station location-routing problem with capacitated electric vehicles. Computers & Operations Research, 55, 217-232.
38. Gogoro台灣官方網站,2019,擷取自:https://www.gogoro.com/tw/
電子全文 電子全文(網際網路公開日期:20240708)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊