(3.236.228.250) 您好!臺灣時間:2021/04/17 08:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許嘉麟
研究生(外文):Hsu, Chia-Lin
論文名稱:鋁與鍺摻雜對二氧化鋯閘極介電層之影響及通道摻雜對n型鍺電晶體之影響研究
論文名稱(外文):Studies on the Effect of Al- and Ge-incorporation on ZrO2 Gate Dielectric and Effect of Channel Doping on Ge n-MOSFET
指導教授:崔秉鉞
指導教授(外文):Tsui, Bing-Yue
口試委員:張廖貴術
口試委員(外文):Chang-Liao, Kuei-Shu
口試日期:2018-11-07
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:108
中文關鍵詞:閘極介電層氧化鋯n型電晶體通道摻雜
外文關鍵詞:Gegate dieletricZirconium oxiden-MOSFETchannel doping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們探討摻雜鋁與鍺對二氧化鋯閘極介電層之影響。我們發現在二氧化鋯閘極中摻雜鋁會延遲結晶,因而抑制累積區的電容值表現,但同時也會降低閘極漏電流與遲滯現象,亦不會劣化界面;而在二氧化鋯中摻雜鍺,相較於純的二氧化鋯閘極,則不會對電性有太大的改變。另外,我們針對摻雜鋁之二氧化鋯閘極,在不同的金屬沉積後退火溫度下,作不同結構與不同摻雜濃度的比較。並從中找出最佳的結構與摻雜濃度。
為了能深入了解摻雜鋁對二氧化鋯閘極介電層結晶現象的影響,我們製作不同厚度及更高沉積後退火溫度的試片。我們發現,在二氧化鋯的閘極中摻雜鋁,會增加二氧化鋯的結晶臨界厚度與臨界溫度,因此延緩結晶的現象。
整體而言,在漏電對等效氧化層的趨勢中,純的二氧化鋯閘極還是有較好的表現;摻雜鋁的二氧化鋯閘極則是有更低的漏電流。而在二氧化鋯中摻雜鋁跟摻雜鍺都能有效的降低遲滯現象,且不會劣化介面。
接著,我們探討通道摻雜對n型鍺電晶體的影響。我們製作不同通道摻雜濃度的鍺電晶體,並量測其電性,其中包含轉換特性曲線、輸出特性曲線、介面缺陷及邊緣缺陷的評估與遷移率。在之前發表的文獻中提出,隨著通道濃度漸濃到1e18時,導通電流及電子遷移率似乎會有嚴重衰減的現象。但依據本篇研究中的量測結果,隨著通道濃度漸濃,受到離子植入後增加的介面缺陷之庫倫散射的影響,導通電流及電子遷移率只有些微的下降。
對於那些導通電流與遷移率的有嚴重衰減現象的元件,我們提出可能的猜測與解決方式。我們猜測電性嚴重衰減的現象,是由於高能量的離子植入後,產生大量晶格缺陷,導致介面與閘極的劣化,進而有更嚴重的庫倫散射效應,同時也不排除是因晶圓本身品質不佳所造成。另外,相較於矽電晶體,庫倫散射及表面粗糙散射在鍺電晶體中嚴重許多。因此若能改善鍺基板與閘極介面,例如增加適當的熱製程,或使用更高品質的晶圓,勢必能讓鍺電晶體有更好的表現。
In this thesis, the properties of Al- and Ge-doped ZrO2 dielectric stacks on Ge devices are investigated thoroughly. It is found that the doping of Al suppresses the crystallization of ZrO2, resulting in the reduce of accumulation capacitance; however, it also reduces the leakage current and promotes the hysteresis performance without the deterioration of interface state density. In contrast, the Ge-doped samples exhibit similar performance as the samples with pure ZrO2. On the other hand, the effects of different structures and several Al doping concentrations with various post-metal annealing (PMA) temperatures are also discussed and evaluated, and the best condition is proposed and suggested.
In order to further understand the influence of the incorporation of Al into ZrO2 as gate dielectric, the samples with thicker physical thickness and higher PMA temperatures are fabricated. It is discovered that the doping of Al will increase the critical crystallization temperature and the onset crystallization thickness of ZrO2, which accounts for the retardation of crystallization.
Overall, the pure ZrO2 samples still exhibit better J_G-EOT behavior, while the Al-doped samples own lower leakage current. In addition, all the Al- and Ge- doped samples have better hysteresis than the pure ZrO2 ones without the deterioration of the interfacial layer.
Next, Germanium (Ge) n-MOSFETs with various channel doping concentration are fabricated, and the effects of channel doping are fully discussed and investigated. The overall electrical properties are evaluated, including transfer and output characteristics, the number of interface traps and border traps, and the channel mobility. In previously proposed researches, it is found that the on-current and mobility will severely degrade when the substrate doping concentration reaches 1e18. However, in this thesis, only slight deterioration of on-current and mobility is observed at the higher doping concentration, probably due to the Coulomb scattering of interface trap densities generated after implantation.
Then, for the samples with severe on-current and mobility degradation, the possible speculation and solution are proposed. it is suspected that the severe degradation may result from the extra Coulomb scattering caused by the defects generated at the interface after implantation with high energy. In addition, the quality of Ge wafer may also be a concern. On the other hand, it is discovered that the Coulomb scattering and the surface roughness scattering are more serious in Ge n-MOSFET compared to silicon. As a result, if the interface and substrate of Ge n-MOSFET can be improved more with appropriate thermal budget or high-quality wafer, it is possible to achieve better performance.
Abstract (Chinese) i
Abstract (English) iii
Acknowledgement v
Contents vii
List of Tables x
List of Figures xii

Chapter 1 Introduction
1-1 General Background of Germanium Devices 1
1-2 Challenges of Germanium Devices 2
1-2-1 Challenges of Source/Drain 3
1-2-2 Source/Drain Engineering 3
1-2-3 Challenges of Gate 4
1-2-4 Gate Engineering 5
1-2-4-1 Pre-cleaning methods of Ge Devices 5
1-2-4-2 Surface Passivation of Ge Devices 5
1-2-4-3 Gate Structure Engineering of Ge Devices 6
1-2-5 Mobility degradation 6
1-3 Motivation 7
1-4 Thesis Organization 8

Chapter 2 Experiments
2-1 Fabrication of Ge MOSCAPs 14
2-2 Fabrication of Ge MOSFET 15
2-3 Measurement of Ge MOSCAPs 17
2-3-1 Basic Characteristic and Measurement of MOSCAPs 17
2-3-2 Interface State Density Extraction by Conductance Method 18
2-4 Measurement of MOSFETs 20
2-4-1 Basic Characteristic and Measurement of MOSFET 20
2-4-2 Mobility Extraction 21
2-4-2-1 Field Effect Mobility 21
2-4-2-2 Effect Mobility 21
2-4-2-3 Hall Mobility 22

Chapter 3 Germanium MOSCAPs with Al-doped and Ge-doped ZrO2 as gate dielectric
3-1 Effects of Al-doped ZrO2 on Ge MOSCAPs 36
3-1-1 Structure Effects 36
3-1-2 Doping Concentration Effects 38
3-1-3 Mechanism of Al dopants in ZrO2 39
3-1-3-1 Thickness Effects on Crystallization 40
3-1-3-2 Temperature Effects on Crystallization 40
3-2 Effects of Ge-doped ZrO2 on Ge MOSCAPs 41
3-3 Summary of MOSCAPs 42

Chapter 4 Channel Doping Effects on Germanium n-MOSFET
4-1 Basic Electrical Characteristics of Ge n-MOSFETs 66
4-1-1 N+/P Junction Characteristic 66
4-1-2 Transfer and Output characteristic 67
4-1-3 Interface Traps (Fast Traps) 68
4-1-4 Border Traps (Slow Traps) 71
4-1-5 Mobility 72
4-2 Summary of Substrate Doping Effects 73

Chapter 5 Conclusions and Future Work
5-1 Conclusions and Summary 95
5-2 Future Work 99

References 101
Vita 108
J. Early, “Out to Murray Hill to play: an early history of transistors,” IEEE Transactions on Electron Devices, vol. 48, no. 11, pp. 2468–2472, 2001.
V. Chan, R. Rengarajan, N. Rovedo, W. Jin, T. Hook, P. Nguyen, J. Chen, E. Nowak, X.-D. Chen, D. Lea, A. Chakravarti, V. Ku, S. Yang, A. Steegen, C. Baiocco, P. Shafer, H. Ng, S.-F. Huang, and C. Wann, “High speed 45nm gate length CMOSFETs integrated into a 90nm bulk technology incorporating strain engineering,” in IEDM Tech. Dig., 2003, pp. 77–80.
C. Auth, “45nm high-k metal gate strain-enhanced CMOS transistors,” in 2008 IEEE Custom Integrated Circuits Conference, 2008, pp. 379–386.
Y. Kamata, “High-k/Ge MOSFETs for future nanoelectronics,” Materials Today, vol. 11, no. 1-2, pp. 30–38, 2008.
C. O. Chui, H. Kim, D. Chi, B. Triplett, P. Mcintyre, and K. Saraswat, “A sub-400°C germanium MOSFET technology with high-κ dielectric and metal gate,” in IEDM Tech. Dig., 2002, pp. 437–440.
H. Shang, H. Okorn-Schmidt, K. Chan, M. Copel, J. Ott, P. Kozlowski, S. Steen, S. Cordes, H.-S. Wong, E. Jones, and W. Haensch, “High mobility p-channel germanium MOSFETs with a thin Ge oxynitride gate dielectric,” in IEDM Tech. Dig., 2002, pp. 441–444.
F. A. Trumbore, “Solid solubilities of impurity elements in germanium and silicon,” Bell System Technical Journal, vol. 39, no. 1, pp. 205–233, 1960.
C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, “Activation and diffusion studies of ion-implanted p and n dopants in germanium,” Applied physics letters, vol. 83, no. 16, pp. 3275–3277, 2003.
Y. Kamata, Y. Kamimuta, T. Ino, R. Iijima, M. Koyama, and A. Nishiyama, “Influences of annealing temperature on characteristics of Ge p-channel metal oxide semiconductor field effect transistors with ZrO2 gate dielectrics,” Japanese Journal of Applied Physics, vol. 45, no. 7, pp. 5651–5656, 2006.
A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Applied physics letters, vol. 89, no. 25, p. 252110, 2006.
Wündisch, M. Posselt, B. Schmidt, V. Heera, T. Schumann, A. Mücklich, R. Grötzschel, W. Skorupa, T. Clarysse, E. Simoen, and H. Hortenbach, “Millisecond flash lamp annealing of shallow implanted layers in Ge,” Applied physics letters, vol. 95, no. 25, p. 252107, 2009.
H.-Y. Yu, Y. Nishi, K. Saraswat, S.-L. Cheng, and P. Griffin, "Germanium in-situ doped epitaxial growth on Si for high-performance n+/p-junction diode," IEEE Electron Device Letters, vol. 30, no. 9, pp. 1002-1004, 2009.
J. Huang, N. Wu, Q. Zhang, C. Zhu, A. A. O. Tay, G. Chen, and M. Hong, “Germanium n+∕p junction formation by laser thermal process,” Applied physics letters, vol. 87, no. 17, p. 173507, 2005.
J.-H. Park, D. Kuzum, M. Tada, and K. C. Saraswat, “High performance germanium N+∕P and P+∕N junction diodes formed at low temperature (⩽380°C) using metal-induced dopant activation,” Applied physics letters, vol. 93, no. 19, p. 193507, 2008.
Y. Tong, B. Liu, P. S. Y. Lim, and Y.-C. Yeo, “Selenium segregation for effective Schottky barrier height reduction in NiGe/n–Ge contacts,” IEEE Electron Device Letters, vol. 33, no. 6, pp. 773–775, 2012.
L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, "Germanium–tin n+/p junction formed using phosphorus ion implant and 400°C rapid thermal anneal," IEEE Electron Device Letters, vol. 33, no. 11, pp. 1529–1531, 2012.
Y.-J. Chen, B.-Y. Tsui, H.-J. Chou, C.-I. Li, G.-P. Lin, and S.-Y. Hu, “Reduced junction leakage by hot phosphorus ion implantation of NiGe-contacted germanium n+/p shallow junction,” IEEE Electron Device Letters, vol. 38, no. 9, pp. 1192–1195, 2017.
K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces,” Applied physics letters, vol. 76, no. 16, pp. 2244–2246, 2000.
M. Cardona and N. E. Christensen, “Acoustic deformation potentials and heterostructure band offsets in semiconductors,” Physical Review B, vol. 35, no. 12, pp. 6182–6194, 1987.
D. Kuzum, T. Krishnamohan, A. Nainani, Y. Sun, P. A. Pianetta, H. S.-. P. Wong, and K. C. Saraswat, “Experimental demonstration of high mobility Ge NMOS,” in IEDM Tech. Dig. 2009, pp. 453–456.
S. Sun, Y. Sun, Z. Liu, D.-I. Lee, S. Peterson, and P. Pianetta, “Surface termination and roughness of Ge(100) cleaned by HF and HCl solutions,” Applied physics letters, vol. 88, no. 2, p. 021903, 2006.
T. Akane, J. Tanaka, H. Okumura, and S. Matsumoto, “Preparation of high-quality Ge substrate for MBE,” Applied Surface Science, vol. 108, no. 2, pp. 303–305, 1997.
M. Walker, M. Tedder, J. Palmer, J. Mudd, and C. Mcconville, “Low temperature removal of surface oxides and hydrocarbons from Ge(100) using atomic hydrogen,” Applied Surface Science, vol. 379, pp. 1–7, 2016.
Z. Qin, D. Shi, W. Ji, S. Pan, and H.-J. Gao, “Processing of an atomically smooth Ge(001) surface on a large scale,” Nanotechnology, vol. 17, no. 9, pp. 2396–2398, 2006.
T. Maeda, M. Nishizawa, Y. Morita, and S. Takagi, “Role of germanium nitride interfacial layers in HfO2/germanium nitride/germanium metal-insulator-semiconductor structures,” Applied physics letters, vol. 90, no. 7, p. 072911, 2007.
M. M. Frank, S. J. Koester, M. Copel, J. A. Ott, V. K. Paruchuri, H. Shang, and R. Loesing, “Hafnium oxide gate dielectrics on sulfur-passivated germanium,” Applied physics letters, vol. 89, no. 11, p. 112905, 2006.
I. Z. Mitrovic, M. Althobaiti, A. D. Weerakkody, V. R. Dhanak, W. M. Linhart, T. D. Veal, N. Sedghi, S. Hall, P. R. Chalker, D. Tsoutsou, and A. Dimoulas, “Ge interface engineering using ultra-thin La2O3 and Y2O3 films: A study into the effect of deposition temperature,” Journal of Applied Physics, vol. 115, no. 11, p. 114102, 2014.
Y. Seo, T. I. Lee, C. M. Yoon, B.-E. Park, W. S. Hwang, H. Kim, H.-Y. Yu, and B. J. Cho, “The impact of an ultrathin Y2O3 layer on GeO2 passivation in Ge MOS gate stacks,” IEEE Transactions on Electron Devices, vol. 64, no. 8, pp. 3303–3307, 2017.
D. Kuzum, T. Krishnamohan, A. J. Pethe, A. K. Okyay, Y. Oshima, Y. Sun, J. P. Mcvittie, P. A. Pianetta, P. C. Mcintyre, and K. C. Saraswat, “Ge-interface engineering with ozone oxidation for low interface-state density,” IEEE Electron Device Letters, vol. 29, no. 4, pp. 328–330, 2008.
S. Takagi, T. Maeda, N. Taoka, M. Nishizawa, Y. Morita, K. Ikeda, Y. Yamashita, M. Nishikawa, H. Kumagai, R. Nakane, S. Sugahara, and N. Sugiyama, “Gate dielectric formation and MIS interface characterization on Ge,” Microelectronic Engineering, vol. 84, no. 9-10, pp. 2314–2319, 2007.
R. Zhang, P.-C. Huang, J.-C. Lin, N. Taoka, M. Takenaka, and S. Takagi, "High-mobility Ge p- and n-MOSFETs with 0.7-nm EOT using HfO2/Al2O3/GeOx/Ge gate stacks fabricated by plasma postoxidation," IEEE Transactions on Electron Devices, vol. 60, no. 3, pp. 927–934, 2013.
Q. Xie, S. Deng, M. Schaekers, D. Lin, M. Caymax, A. Delabie, Y. Jiang, X. Qu, D. Deduytsche, and C. Detavernier, "High-performance Ge MOS capacitors by O2 plasma passivation and O2 ambient annealing," IEEE Electron Device Letters, vol. 32, no. 12, pp. 1656–1658, 2011.
L. Lamagna, C. Wiemer, S. Baldovino, A. Molle, M. Perego, S. Schamm-Chardon, P. E. Coulon, and M. Fanciulli, "Thermally induced permittivity enhancement in La-doped ZrO2 grown by atomic layer deposition on Ge(100)," Applied physics letters, vol. 95, no. 12, p. 122902, 2009.
A. Agrawal, M. Barth, G. B. Rayner, V. T. Arun, C. Eichfeld, G. Lavallee, S.-Y. Yu, X. Sang, S. Brookes, Y. Zheng, Y.-J. Lee, Y.-R. Lin, C.-H. Wu, C.-H. Ko, J. Lebeau, R. Engel-Herbert, S. E. Mohney, Y.-C. Yeo, and S. Datta, "Enhancement mode strained (1.3%) germanium quantum well FinFET (WFin=20nm) with high mobility (μHole=700 cm2/Vs), low EOT (~0.7nm) on bulk silicon substrate," in IEDM Tech. Dig., 2014, pp. 414–417.
R. Pandey, C. Schulte-Braucks, R. N. Sajjad, M. Barth, R. K. Ghosh, B. Grisafe, P. Sharma, N. V. D. Driesch, A. Vohra, B. Rayner, R. Loo, S. Mantl, D. Buca, C.-C. Yeh, C.-H. Wu, W. Tsai, D. Antoniadis, and S. Datta, “Performance benchmarking of p-type In0.65Ga0.35As/GaAs0.4Sb0.6 and Ge/Ge0.93Sn0.07 hetero-junction tunnel FETs,” in IEDM Tech. Dig., 2016, pp. 520–523.
C. H. Chou, H. H. Chang, C. C. Hsu, W. K. Yeh, and C. H. Chien, "Low-leakage tetragonal ZrO2 (EOT<1 nm) with in situ plasma interfacial passivation on germanium," IEEE Electron Device Letters, vol. 37, no. 2, pp. 138–141, 2016.
H.-C. Chang, C.-M. Lin, C.-H. Huang, and C. W. Liu, "Hysteresis reduction by fluorine incorporation into high permittivity tetragonal ZrO2 on Ge," Applied physics letters, vol. 104, no. 3, p. 032902, 2014.
R. Zhang, N. Taoka, P.-C. Huang, M. Takenaka, and S. Takagi, “1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation,” in IEDM Tech. Dig., 2011, pp. 642–645.
C. Lee, T. Nishimura, C. Lu, W. Zhang, K. Nagashio, and A. Toriumi, “(Invited) Significant enhancement of high-N_s electron mobility in Ge n-MOSFETs with atomically flat Ge/GeO2 interface,” ECS Transactions, vol. 61, no. 3, pp. 147–156, 2014.
Y.-G. Yang and B.-Y. Tsui, "Thin effective oxide thickness (~0.5 nm) and low leakage current gate dielectric for Ge MOS devices by plasma nitrided Al2O3 intermediate layer," in 2015 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), 2015, pp. 1–2.
Y.-H. Chan and B.-Y. Tsui, “Scaling of gate dielectric on Ge substrate,” in 2017 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), 2017, pp. 1–2.
W. Bai, N. Lu, A. Ritenour, M. Lee, D. Antoniadis, and D.-L. Kwong, " The electrical properties of HfO2 dielectric on germanium and the substrate doping effect," IEEE Transactions on Electron Devices, vol. 53, no. 10, pp. 2551–2558, 2006.
R. Zhang, X. Yu, M. Takenaka, and S. Takagi, "Physical origins of high normal field mobility degradation in Ge p- and n-MOSFETs with GeOx/Ge MOS interfaces fabricated by plasma postoxidation," IEEE Transactions on Electron Devices, vol. 61, no. 7, pp. 2316–2323, 2014.
Y. W. Yoo, W. Jeon, W. Lee, C. H. An, S. K. Kim, and C. S. Hwang, “Structure and electrical properties of Al-doped HfO2 and ZrO2 films grown via atomic layer deposition on Mo electrodes,” ACS Applied Materials & Interfaces, vol. 6, no. 24, pp. 22474–22482, 2014.
H. Shang, K.-L. Lee, P. Kozlowski, C. Demic, I. Babich, E. Sikorski, M. Ieong, H.-S. Wong, K. Guarini, and W. Haensch, “Self-aligned n-channel germanium MOSFETs with a thin Ge oxynitride gate dielectric and tungsten gate,” IEEE Electron Device Letters, vol. 25, no. 3, pp. 135–137, 2004.
A. Ritenour, S. Yu, M. Lee, Z. Lu, W. Bai, A. Pitera, E. Fitzgerald, D. Kwong, and D. Antoniadis, “Epitaxial strained germanium p-MOSFETs with HfO2 gate dielectric and TaN gate electrode,” in IEDM Tech. Dig., 2003, pp. 433–436.
G. Nicholas, D. Brunco, A. Dimoulas, J. V. Steenbergen, F. Bellenger, M. Houssa, M. Caymax, M. Meuris, Y. Panayiotatos, and A. Sotiropoulos, "Germanium MOSFETs with CeO2/HfO2/TiN gate stacks," IEEE Transactions on Electron Devices, vol. 54, no. 6, pp. 1425–1430, 2007.
C. O. Chui, H. Kim, P. Mcintyre, and K. Saraswat, “A germanium NMOSFET process integrating metal gate and improved hi-κ dielectrics,” in IEDM Tech. Dig., 2003, pp. 437–440.
C.-W. Chen, J.-Y. Tzeng, C.-T. Chung, H.-P. Chien, C.-H. Chien, G.-L. Luo, P.-Y. Wang, and B.-Y. Tsui, “Enhancing the performance of germanium channel nMOSFET using phosphorus dopant segregation,” IEEE Electron Device Letters, vol. 35, no. 1, pp. 6–8, 2014.
W. Bai, N. Lu, A. Ritenour, M. Lee, D. Antoniadis, and D.-L. Kwong, "Ge n-MOSFETs on lightly doped substrates with high-k dielectric and TaN gate," IEEE Electron Device Letters, vol. 27, no. 3, pp. 175–178, 2006.
Y.-H. Chan, "A study of the gate engineering of the Ge MOS capacitor and n-MOSFET devices using ZrO2 as gate dielectric," Master, Institute of Electronics, National Chiao Tung University, Hsinchu, 2017.
J. Ziegler and J. Biersack, "SRIM-2013 software package," see http://www. srim. org, 2013.
D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., (Wiley, New York, 1990).
C. Schulte-Braucks, K. Narimani, S. Glass, N. V. D. Driesch, J. M. Hartmann, Z. Ikonic, V. V. Afanas’Ev, Q. T. Zhao, S. Mantl, and D. Buca, "Correlation of bandgap reduction with inversion response in (Si) GeSn/high-k/metal stacks," ACS Applied Materials & Interfaces, vol. 9, no. 10, pp. 9102–9109, 2017.
R. S. Popović, Hall effect devices, 2nd ed., Bristol: Institute of Physics Publishing, 2004.
E. Ramsden, Hall-effect sensors theory and applications, Amsterdam: Elsevier/Newnes, 2006.
R. Zhang, X. Yu, M. Takenaka, and S. Takagi, "Impact of postdeposition annealing ambient on the mobility of Ge nMOSFETs with 1-nm EOT Al2O3/GeOx/Ge gate-stacks," IEEE Transactions on Electron Devices, vol. 63, no. 2, pp. 558–564, 2016.
C.-C. Tsai, "Gated Hall Bar, Mobility Characteristics, and DMOSFET Study in 4H-SiC Power Devices," Master, Institute of Electronics, National Chiao Tung University, Hsinchu, 2017.
K. McKenna, A.Shluger, V. Iglesias, M. Porti, M. Nafría, M. Lanza and G. Bersuker, “Grain boundary mediated leakage current in polycrystalline HfO2 films,” Microelectronic Engineering, vol.88, no.7, pp.1272–1275, 2011.
W. Weinreich, L. Wilde, J. Müller, J. Sundqvist, E. Erben, J. Heitmann, M. Lemberger, and A. J. Bauer, “Structural properties of as deposited and annealed ZrO2 influenced by atomic layer deposition, substrate, and doping,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 31, no. 1, p.01A119, 2013.
J.-S. Lyu, K.-S. Nam, and C. Lee, “Determination of the interface trap density in metal oxide semiconductor field-effect transistor through subthreshold slope measurement,” Japanese Journal of Applied Physics, vol. 32, part 1, no. 10, pp. 4393–4397, 1993.
D. B. Cuttriss, “Relation between surface concentration and average conductivity in diffused layers in germanium,” Bell System Technical Journal, vol. 40, no. 2, pp. 509–521, 1961.
W. R. Thurber, R. L. Mattis, L. Y. And, and J. J. Filliben, The relationship between resistivity and dopant density for phosphorus-and boron-doped silicon, National Bureau of Standards, Special Publication 400-64 (U.S. GPO, Washington, DC, 1981).
S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFETs: Part I-effects of substrate impurity concentration,” IEEE Transactions on Electron Devices, vol. 41, no. 12, pp. 2357–2362, 1994.
W. K. Hofker, D. P. Oosthoek, N. J. Koeman, and H. A. M. D. Grefte, “Concentration profiles of boron implantations in amorphous and polycrystalline silicon,” Radiation Effects, vol. 24, no. 4, pp. 223–231, 1975.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔