|
REFERENCES [1] C.Hamel,”Retinitis pigmentosa,” Orphanet Journal of Rare Diseases, vol. 1, no.1 , article no. 40 ,2006. [2] D. S. Friedman, B. J. O'Colmain, B. Munoz, S. C. Tomany, C. McCarty et al., “Prevalence of age-related macular degeneration in the United States,” Arch Ophthalmol, vol. 122, no. 4, pp. 564-572, April 2004. [3] G. Brindley and W. Lewin "The sensation produced by electrical stimulation of the visual cortex," Journal of Physiology, vol. 196, pp. 479–93, May 1968. [4] A. Majji, M. Humayun, J. Weiland, S. Suzuki, S. D’Anna, and E. deJuan Jr. "Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs," Investigative Ophthalmology and Visual Science, vol. 40 , pp. 2073–81, Aug. 1999. [5] P. Walter, P. Szurman, M. Vobig, H. Berk, H. Ludtke-Handjery, H.Richter, et. al., "Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits". Retina , vol. 19 , pp. 546–52, 1999. [6] K. Sooksood, E. Noorsal, J. Becker, and M. Ortmanns, “A neural stimulator front-end with arbitrary pulse shape, HV compliance and adaptive supply requiring 0.05 mm in 0.35 m HVCMOS,” in IEEE ISSCC Dig. Tech. Papers, 2011, pp. 306–307. [7] C.-C. Chiao, Y.-T. Yang, C. Wan, W.-C. Yang, L.-J. Lin, P.-K. Lin, and C.-Y. Wu,” Responses of rabbit retinal ganglion cells to subretinal electrical stimulation with a silicon-based microphotodiode array,” ARVO Abstract. Invest. Ophtha. Vis. Sci., vol. 33, no. 4, pp. 1048-1992 , May 2010. [8] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, and W. Liu, “An integrated 256-channel epiretinal prosthesis,” in IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1946–1956, Sept. 2010. [9] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, and W. Liu, “A 37.6mm2 1024-Channel High-Compliance -Voltage SoC for Epiretinal Prostheses,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 294-296. [10] J. Ohta, T. Tokuda, K Kagawa, “Laboratory investigation of microelectronics-based stimulators for large-scale suprachoroidal transretinal stimulation (STS),”in J Neural Eng., vol. 4, pp. 85–91, Mar. 2007. [11] T. Tokuda, T. Ito, T. Kitao, T. Noda, K. Sasagawa, and Y. Terasawa et al., “CMOS-based smart-electrode-type retinal stimulator with bulletshaped bulk Pt electrodes,” in Proc. IEEE Eng. Med. Biol. Soc. Conf., 2011, pp. 6733–6736. [12] P. Matteucci, P. Byrnes-Preston, S. Chen, N. Lovell, and G. Suaning, “Arm-based visual processing system for prosthetic vision,” in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, 2011, pp. 3921 –3924. [13] K. Mathieson, J. Loudin, G. Goetz, P. Huie, L. Wang, T. I. Kamins, L. Galambos, R. Smith, J. S. Harris, A. Sher and D. Palanker, “Photovoltaic retinal prosthesis with high pixel density,” Nature Photonics, vol. 6, pp. 391-397, May 2012. [14] Boinagrov, D. et al., “Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance,” Biomedical Circuits and Systems, vol. 10, no. 1, pp. 85–97, Jan. 2016. [15] C.-L. Lee and C.-C. Hsieh, “A 0.8-V 4096-pixel CMOS sense-andstimulus imager for retinal prosthesis,” IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1162–1168, Mar. 2013. [16] S. Oh, J.-H. Ahn, S. Lee, H. Ko, J. M. Seo, Y.-S. Goo, and D. Cho, “Light-Controlled Biphasic Current Stimulator IC Using CMOS Image Sensors for High-Resolution Retinal Prosthesis and In Vitro Experimental Results With rd1 Mouse,” IEEE Transactions on Biomedical Engineering, vol. 62, pp. 70-79, 2015. [17] F. Yang, M.Y. Chang, C.H. Yang, C.C. Teng, and L.S. Fan, "Flexible high-density microphotodiode array with integrated sputtered iridium oxide electrodes for retinal stimulation," J. of Micro/Nanolitho. MEMS and MOEMS, vol. 15, pp. 015002-015002, Mar. 2016. [18] A. Rothermel, “A 1600-pixel subretinal chip with DC-free terminals and ±2V supply optimized for long lifetime and high stimulation efficiency,” in ISSCC Dig. Tech. Papers, pp. 144-602, Feb. 2008. [19] L. Liu, J. Wuenschmann, N. Pour Aryan, A. Zohny, M. Fischer, S. Kibbel, A. Rothermel, “An ambient light adaptive subretinal stimulator,“ European Solid-State Circuits Conference (ESSCIRC), Athens, pp. 420- 423, Sept. 2009. [20] B. Bosse, E. Zrenner, and R. Wilk, “Standard ERG Equipment Can Be Used to Monitor Functionality of Retinal Implants,” in Proc. IEEE Eng. Med. Biol. Soc. Conf., pp. 1089-92, 2011. [21] C. Brendler, N. P.Aryan, V. Rieger, A. Rothermel, “Wireless power delivery for a biomedical retinal prosthesis” Electronics, Circuits, and Systems (ICECS), Dec. 2013, pp.465-468. [22] K. Stingl, K. U. Bartz Schmidt, D. Besch, A. Braun, A. Bruckmann, F. Gekeler, U. Greppmaier, S. Hipp, G. Hortd ¨ orfer, C. Kernstock, ¨ A. Kusnyerik, A. Schatz, K. T. Stingl, T. Peters, B. Wilhelm, and E. Zrenner, “Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS,” Proc. Royal Soc. B: Biol. Sci., vol. 280, no. 1757, pp. 1–8, Apr. 2013. [23] A. Rothermel, “Recent Results With Subretinal Stimulation,” IEEE Biomedical Circuits and Systems Conference (BioCAS), 2014. [24] P.-K. Lin, P.-H. Kuo, Y.-C. Tsai, M.-J. Sui, C.-C. Chiao, T. Noda, J. Ohta, and C.-Y. Wu, “The ex vivo and in vivo electrophysiological investigations of a subretinal photovoltaic prosthesis embedded with solar cells and divisional-power-supply-scheme,” in TEATC (World Research Congress: The Eye and The Chip), 2014. [25] C.-Y. Wu, W.-J. Sung, P.-H. Kuo, C.-K. Tzeng, C.-C. Chiao, and Y.-C. Tsai, “The design of CMOS self-powered 256-pixel implantable chip with on-chip photovoltaic cells and active pixel sensors for subretinal prostheses,” IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015. [26] C.-Y. Wu, P.-H. Kuo, P.-K. Lin, P.-C. Chen, W.-J. Sung, Jun Ohta, Takashi Tokuda, and Toshihiko Noda, “A CMOS 256-Pixel Photovoltaics-Powered Implantable Chip with Active Pixel Sensors and Iridium-Oxide Electrodes for Subretinal Prostheses,” Sensors and Materials, vol. 30, no. 2 ,2018. [27] C.-Y. Wu, P.-H. Kuo, O.-Y. Wong, C.-K. Tzeng, C.-C. Chiao, P.-H. Chen, P.-C. Chen, Y.-C. Tsai, J. Ohta, T. Tokuda, and T. Noda, “The Improved Design of CMOS 256-Pixel Self-Photovoltaics-Powered Subretinal Prosthetic Chip with Charge Pump Circuit and Its in Vitro Experimental Results with Rd1 Mice,” To be submitted to TBE. [28] W.-J. Sung, “The Design of 180-nm CMOS 256-Pixel Sensing and Biphasic Stimulation Chips with on-chip Photovoltaic cells and Divisional Power Suplly Scheme for Subretinal Prothseses,” Master thesis, Institute of Electronics , National Chiao Tung University, 2016. [29] J.-H. Liao, “The Design of 180-nm CMOS 480-Pixel Sensing and Biphasic Current Stimulation Chips with Four Directional Sharing Electrodes and Charge Pump for Subretinal Prosthesis,” Master thesis, Institute of Electronics, National Chiao Tung University, 2018. [30] C.-Y. Wu, P.-K. Lin, J. Lin, C. Yang, C. Wan, “Power controlling apparatus applied to biochip and operating method thereof.” U.S. Patent 7 622 702, Mar. 12, 2009. [31] O.-Y. Wong, P.-H. Chen, and C.-Y. Wu, “A Fully-Integrated Charge Pump for Self-Powered Implantable Retinal Prostheses,” IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2016. [32] G. Yang, X. Yu, and S. Lun, “A new analytical method for the extraction of series resistance of solar cell,” International Conference on Mechatronics and Control (ICMC), July 3 - 5, 2014. [33] Z. Chen, M.-K. Law, P.-I. Mak, and Rui P. Martins, “A Single-Chip Solar Energy Harvesting IC Using Integrated Photodiodes for Biomedical Implant Applications,” Transactions on biomedical circuits and systems, vol. 11, no. 1, 2017. [34] S. Negi, R. Bhandari, L. Rieth, and F. Solzbacher, “In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays,” Biomed.Mater., vol. 5, 2010. [35] V. Rieger , F. Buntz , C. Feller and A. Rothermel, “Low-Latency System for Evaluation of Image-Enhancement-Algorithms on Patients using Subretinal Implants,” Engineering in Medicine and Biology Society (EMBC), 05 November 2015. [36] H. C. Stronks and G. Dagnelie, “The functional performance of the Argus II retinal prosthesis,” Expert review of medical devices, vol. 11, no. 1, pp. 23-30, 2014. [37] U. S. Food and Drug Administration/Center for Drug Evaluation and Research. “Active implantable medical devices. General requirements for safety, marking and information to be provided by the manufacturer,” 1998. [38] C. Q. Huang, R. K. Shepherd, P. M. Seligman, and B. Tabor, "Electrical stimulation of the auditory nerve: direct current measurement in vivo," IEEE Transactions on biomedical engineering, vol. 46, no. 4, pp. 461-469, 1999. [39] D. R. Merrill, M. Bikson, and J. G. Jefferys, "Electrical stimulation of excitable tissue: design of efficacious and safe protocols," Journal of neuroscience methods, vol. 141, no. 2, pp. 171-198, 2005. [40] R. J. Jensen and J. F. Rizzo III, “Activation of retinal ganglion cells in wild-type and rd1 mice through electrical stimulation of the retinal neural network,” in Vis Res, vol. 48, pp. 1562–8, 2008. [41] M. A.P. Pertijs and J. K. Huijsing, Precision Temperature Sensors in CMOS Technology. Springer Science & Business Media, 2006. [42] B. Sakmann and O.D. Creutzfeldt. “ Scotopic and mesopic light adaption in the cat’s retina.” Pflügers Archives, 313 (1969), pp. 168-185, June 1969. [43] J. Ohta, Smart CMOS Image Sensors and Applications Boca Raton, FL, USA : CRC Press, 2007. [44] R. G. H. Wilke, et al. “ Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants.” in J Neural Eng., vol. 8, pp. 046016, Jun. 2011. [45] S. Mafrica et al., "A bio-inspired analog silicon retina with Michaelis-Menten auto-adaptive pixels sensitive to small and large changes in light," Optics express, vol. 23, no. 5, pp. 5614-5635, 2015. [46] M. Abramian, N. H. Lovell, A. Habib, J. W. Morley, G. J. Suaning, and S. Dokos, "Quasi-monopolar electrical stimulation of the retina: a computational modelling study," Journal of neural engineering, vol. 11, no. 2, pp. 025002, 2014. [47] M. Coltheart, “The Persistences of Vision,” Philosophical Transactions of the Royal Society of London B: Biological Sciences, vol. 290, pp. 57-69, 1980. [48] C. Q. Huang, R. K. Shepherd, P. Center, P. M. Seligman, and B. Tabor, "Electrical stimulation of the auditory nerve: direct current measurement in vivo," IEEE Transactions on biomedical engineering, vol. 46, no. 4, pp. 461-469, 1999. [49] B. Goldstein, D. Kim, J. Xu, T. K. Vanderlick, and E. Culurciello, “CMOS Low Current Measurement System for Biomedical Applications” IEEE Transactions on biomedical circuits and systems, vol. 6, no. 2, Apr. 2012.
|