(54.236.62.49) 您好!臺灣時間:2021/03/08 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊又叡
研究生(外文):Chuang, You-Ruei
論文名稱:具省電機制之數位整合三軸加速度計之設計
論文名稱(外文):Design of digital integrated three-axis accelerometer with power saving mechanism
指導教授:溫瓌岸
指導教授(外文):Wen, Kuei-Ann
口試委員:溫瓌岸黃威黃柏蒼
口試委員(外文):Wen, Kuei-AnnHwang, WeiHuang, Po-Tsang
口試日期:2019-04-15
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:102
中文關鍵詞:微機電三軸加速度計省電機制數位整合
外文關鍵詞:MEMSThree-axis accelerometerPower saving mechanismDigital integration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一加速度感測系統,整合類比至數位轉換器(ADC)於單晶片中,採用分時多工之類比前端讀出電路,改善分頻多工電壓擺幅會被三軸訊號均分的缺點。此加速度感測系統於0.18 μm CMOS-MEMS製程下完成。並於類比前端讀出電路中,提出一功率控制的方法,可以讓使用者根據使用需求,自由的切換單軸與多軸模式,於單軸模式下有較低的功率消耗,以提高電池的使用時間。
對於MEMS三軸加速度計,量測結果其三軸之共振頻率分別為4.7 kHz、4.3 kHz、4.28 kHz。此分時多工讀出電路操作範圍為±16g,於加速度振動量測平台上,量測到的x軸、y軸、z軸的靈敏度分別為79.43 mV/g、44.29 mV/g、13.25 mV/g,解析度分別為1.78 mg/√Hz、1.01 mg/√Hz、3.38 mg/√Hz。並於單軸模式下,功率消耗為256.2 μW;三軸模式下,功率消耗為779.4 μW。此外,10-bit類比至數位轉換器操作於50 kS/s的取樣頻率下,量測到的SNDR為50.21 dB,其對應的ENOB為8.05。
In this thesis, an acceleration sensing system is proposed, which integrates an analog-to-digital converter (ADC) into a single chip. We adopt time division multiplexing to realize the analog front-end readout circuit and improve the disadvantage in frequency division multiplexing that the voltage swing will be shared by the three-axis signals. This acceleration sensing system is implemented in 0.18 μm CMOS-MEMS process. And in the analog front-end readout circuit, a power controller is proposed, which can switch between single-axis and multi-axis mode freely according to user mode. There is less power consumption in the single-axis mode to extend the battery life.
For the MEMS three-axis accelerometer, the measured resonance frequencies are 4.7 kHz, 4.3 kHz, and 4.28 kHz, respectively. The sensing range of the three-axis accelerometer is ±16g. On the acceleration and vibration measurement platform, the measured sensitivities of x-, y-, z-axis are 79.43 mV/g, 44.29 mV/g, and 13.25 mV/g, respectively. The resolutions are 1.78 mg/√Hz, 1.01 mg/√Hz, 3.38 mg/√Hz, respectively. In single-axis mode, the power consumption is 256.2 μW. On the other hand, in 3-axis mode, the power consumption is 779.4 μW. In addition, the 10-bit analog-to-digital converter operates at a sampling frequency of 50 kS/s. The measured SNDR is 50.21 dB, the corresponding ENOB of 8.05.
摘要 i
ABSTRACT ii
致謝 iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization 4
Chapter 2 MEMS Accelerometer Design and Simulation 5
2.1 CMOS-MEMS Fabrication 5
2.1.1 Process 5
2.1.2 CMOS-MEMS Process Layout Rules 7
2.2 Model and Design of MEMS Sensor 11
2.2.1 Mass-Spring-Damper Model for MEMS Motion System 11
2.2.2 Structure of MEMS Accelerometer 13
2.2.3 Operational Principle of MEMS accelerometer 16
2.3 Accelerometer Behavior Simulation 20
2.3.1 Modal Analysis 20
2.3.2 Coupled Electromechanical Analysis 22
Chapter 3 Readout Circuit Design and Simulation 28
3.1 System Architecture 28
3.2 Analog Front-end Circuit Design 29
3.2.1 Noise Reduction Technique – Chopper 29
3.2.2 Time Division Multiplexing 30
3.2.3 First Stage Amplifier Design and Simulation 31
3.2.4 2nd Gain Stage Amplifier Design and Simulation 35
3.2.5 Track & Hold Circuit 38
3.2.6 Voltage Buffer Design and Simulation 39
3.2.7 Second-order Low Pass Filter Design and Simulation 41
3.2.8 Clock Generator Circuit Design 44
3.2.9 Power Control for Single-axis and Multi-axis Mode Switching 45
3.3 A/D Converter Design 47
3.3.1 Monotonic-Switching SAR ADC 47
3.3.2 Analysis of Switching Energy in DAC Network 49
3.3.3 Bootstrapped Switch Design and Simulation 51
3.3.4 Dynamic Comparator Design and Simulation 53
3.3.5 Asynchronous SAR Control Logic 58
3.3.6 Capacitor Array 59
Chapter 4 Sensor and Readout Circuit Co-simulation 60
4.1 Design Flow of Sensor and Analog Front-end Circuit 60
4.2 Co-simulation of Sensor and Analog Front-end Circuit 62
4.3 Design Flow of A/D Converter 67
4.4 Simulation of Monotonic-Switching SAR ADC 68
Chapter 5 Measurement Results 72
5.1 Measurement Results of the MEMS Structure 75
5.1.1 SEM View of the MEMS Accelerometer 75
5.1.2 Curl Measurement in White Light Interferometer 78
5.1.3 Frequency Response of the MEMS Accelerometer 83
5.2 Measurement Results of the Sensor and Front-end Analog Circuit 87
5.3 Measurement Results of the SAR ADC 93
5.3.1 Dynamic Performance 96
5.3.2 Static Performance 97
Chapter 6 Conclusions and Future Work 99
6.1 Conclusions 99
6.2 Future Work 99
REFERENCES 100
[1] N. Yazdi, F. Ayazi, and K. Najafi, "Micromachined inertial sensors," Proceedings of the IEEE, vol. 86, pp. 1640-1659, 1998.
[2] Hong-Ting, Lin, “Innovative Three-Axis Accelerometer with Frequency Division Multiplexing Readout Circuit,” NCTU, Master Degree Thesis, 2014.
[3] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, Ying-Zu Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
[4] CIC技術資料,UMC 0.18 μm金氧半導體微機電製程設計指引,2018。
[5] Siew-Seong Tan, “Design of High-performance CMOS MEMS Accelerometer SOC’s,” NTHU, Doctor Degree Thesis, 2011.
[6] Arjun Selvakumar, Khalil Najafi, “A High-Sensitivity Z-Axis Capacitive Silicon Microaccelerometer with a Torsional Suspension,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 7, NO. 2, JUNE 1998.
[7] Behzad Razavi, “Design of Analog CMOS Integrated Circuit,” McGraw-Hill, New York, 2001.
[8] H. T. Friis, “Noise Figure of Radio Receivers,” Proc. IRE, vol. 32, pp. 419-422, July 1944.
[9] Chutham Sawigun, Jirayuth Mahattanakul, Andreas Demosthenous, Dipankar Pal, “A low-power CMOS analog voltage buffer using compact adaptive biasing,” 18th European Conference on Circuit Theory and Design, pp. 1-4, August, 2007.
[10] Chun-Cheng Liu, “Design of High-Speed Energy-Efficient Successive-Approximation Analog-to Digital Converters,” NCKU, Doctor Degree Thesis, 2010.
[11] M. Dessouky, A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched op amp circuits,” Electronics Letters, Vol. 35, Issue: 1, pp. 8-10, January, 1999.
[12] Ting-Ting Zhang, Hao-Jiong Li, Jing-Qing Huang, Meng Zhao, Li-Chen Hong, Ya-Cong Zhang, Wen-Gao Lu, Zhong-Jian Chen, “An Offset-compensated Switched-Capacitor Interface Circuit for Closed-loop MEMS Capacitive Accelerometer,” Solid-State and Integrated Circuit Technology (ICSICT), 2012.
[13] Hongzhi Sun, Deyou Fang, Kemiao Jia, Fares Maarouf, Hongwei Qu, Huikai Xie, “A Low-Power Low-Noise Dual-Chopper Amplifier for Capacitive CMOS-MEMS Accelerometers,” IEEE SENSORS JOURNAL, VOL. 11, NO. 4, APRIL 2011.
[14] Po-Chang Wu, Bin-Da Liu, Sheng-Hsiang Tseng, Hann-Huei Tsai, Ying-Zong Juang, “Digital Offset Trimming Techniques for CMOS MEMS Accelerometers,” IEEE SENSORS JOURNAL, VOL. 14, NO. 2, FEBRUARY 2014.
[15] P. Lajevardi, V. P. Petkov, and B. Murmann, “A ∆Σ interface for MEMS accelerometers using electrostatic spring constant modulation for cancellation of bondwire capacitance drift,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 265–275, Jan. 2013.
[16] K. Y.-T. Lai, Z.-C. He, Y.-T. Yang, H.-C. Chang, and C.-Y. Lee, “A 0.0354 mm2 82 μW 125 KS/s 3-axis readout circuit for capacitive MEMS accelerometer,” Solid-State Circuits Conference (A-SSCC), Nov. 2013.
[17] Jaehoon Jun; Cyuyeol Rhee; Sangwoo Kim; Suhwan Kim, “An SC Interface With Programmable-Gain Embedded ∆Σ ADC for Monolithic Three-Axis 3-D Stacked Capacitive MEMS Accelerometer,” IEEE Sensors Journal, vol. 17, no. 17, pp. 5558-5559, Sept. 2017.
電子全文 電子全文(網際網路公開日期:20240415)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔