(54.236.58.220) 您好!臺灣時間:2021/02/28 09:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:嚴敬閔
研究生(外文):Yen, Ching-Min
論文名稱:毫米波被動式射頻辨識電子標籤與低損耗射頻切換器
論文名稱(外文):A Millimeter-Wave Passive RFID Tag IC and a Low Loss RF Switch
指導教授:王毓駒陳柏宏陳柏宏引用關係
指導教授(外文):Wang, Yu-JiuChen, Po-Hung
口試委員:王毓駒朱大舜蘇柏青
口試委員(外文):Wang, Yu-JiuChu, Ta-ShunSu, Bor-Ching
口試日期:2019-05-06
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:68
中文關鍵詞:射頻射頻辨識電子標籤毫米波能量攫取器脈衝寬度調變切換器
外文關鍵詞:Radio FrequencyRFID TagMillimeter WaveEnergy HarvesterPulse-Width ModulationSwitch
相關次數:
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著近年來非常熱門的第五代行動通訊與物聯網應用,射頻辨識系統的重要性也大幅度增加,射頻辨識系統的研究與討論數量都非常多,射頻辨識電子標籤可以被應用在通行收費系統、通行證、商品標籤……等。此外,相位陣列雷達的討論熱度也非常高,我們希望藉由相位陣列雷達與電子標籤來完成射頻辨識系統。本次研究基於實驗室先前65奈米製程的射頻辨識電子標籤,將架構移植到28奈米製程,並針對靈敏度(Sensitivity)、效率(Efficiency)、功率消耗(Power Consumption)與低工作電壓作改善。我們提出的毫米波被動式射頻辨識電子標籤,具有小尺寸的特性,能夠嵌入在紙張、塑膠、衣物等商品中;而電路不需要額外提供電池的特性,使其能夠藉由攫取環境中的電磁能來轉換成電路所需能量。本篇論文會介紹射頻辨識電子標籤的運作模式與其中各個子電路的架構與功能,而會特別詳述非同步數位控制器與脈衝寬度調變接收器的部分。此外,本篇論文也會針對射頻切換器作介紹,並說明應用在相位陣列雷達硬體前端電路中的切換器所需要的規格,以及討論設計過程。
The 5th generation wireless systems and the Internet of Things applications are becoming popular in recent years. The importance of Radio Frequency Identification (RFID) systems has increased significantly. The number of research and discussion on the RFID system grows a lot. The RFID tag can be applied in the electronic toll collection system, access cards, product labels, etc. Besides, the discussion of phased-array radar is also very hot. We want to complete an RFID system by the phased-array radar and the RFID tag as the reader and the tag. Keeping going with the previous 65nm RFID tag structure, the project is focused on the process porting to 28nm and improves the sensitivity, efficiency, power consumption, and operation under low voltage. The proposed millimeter-wave passive RFID tag IC achieves small size so it can be embedded into paper, plastic or clothes. The tag does not need an additional battery. It can harvest the electromagnetic energy from the environment and converter this energy to DC power needed for the circuit operation. This thesis introduces the operating state of the RFID tag and describes the function and architecture of each sub-circuit. The asynchronous digital controller and the PWM receiver will be discussed in detail. Moreover, the thesis introduces the RF switch as well. This thesis describes the specifications required for the switch used in the phased-array radar frontend circuit and the design process is also explained.
1 Introduction 1

2 A Millimeter-Wave Passive RFID Tag IC 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Operating Principle of the Proposed RFID Tag IC . . . . . . . . . . . . . . . 5

2.3 Energy Harvester Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Rectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Boost Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Power Management Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Asynchronous Digital Controller Architecture . . . . . . . . . . . . . . . . . 15

2.5.1 Asynchronous State Machine . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Memory Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 PWM Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Envelope Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.2 Integrator and Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.3 Bandgap Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.4 Preamble Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

i


2.7 PWM Transmitter Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.1 Ring Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.2 Control Pulse Generator . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7.3 Voltage Control Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7.4 Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8.1 Energy Harvester Measurement . . . . . . . . . . . . . . . . . . . . . 37

2.8.2 Asynchronous Digital Controller Measurement . . . . . . . . . . . . . 41

2.8.3 PWM Receiver Measurement . . . . . . . . . . . . . . . . . . . . . . 41

2.8.4 PWM Transmitter Measurement . . . . . . . . . . . . . . . . . . . . 42

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 A Low Loss RF Switch 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Specification Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Proposed Switch Design and Relevant Consideration . . . . . . . . . . . . . 51

3.4 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Conclusion and Future Works 63

Bibliography 66
[1] M. Bhuptani and S. Moradpour, “RFID field guide: deploying radio frequency identification systems:” Prentice Hall PTR, 2005.

[2] K. Finkenzeller, “RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication:” Wiley, 2010.

[3] R. Want, “An introduction to RFID technology,” Pervasive Computing, IEEE, vol. 5, no. 1, pp. 25-33, Jan.-Mar. 2006.

[4] P.H. Hsieh, C.H. Chou, and T. Chiang, “An RF Energy Harvester With 44.1% PCE at Input Available Power of -12 dBm,” IEEE Trans. On Circuit And Systems-I: Regular Papers, vol. 62, no. 6, pp1528-1537, Jun. 2015.

[5] J. Dickson, “On-chip high-voltage generation in NMOS integrated circuits using an improved voltage multiplier technique,” IEEE J. Solid-State Circuits, vol. 11, no. 3, pp. 374-378, Jun. 1976.

[6] M. Seok, G. Kim, D. Blaauw and D. Sylvester, “A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V,” IEEE J. Solid-State Circuits, vol. 47, no. 10, pp. 2534-2545, Oct. 2012.

[7] E. J. Carlson, K. Strunz, and B. P. Otis, “A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 741-750, Apr. 2010.

[8] J. Zhou, C. Wang, X. Liu, X. Zhang, and M. Je, “An Ultra-Low Voltage Level Shifter Using Revised Wilson Current Mirror for Fast and Energy-Efficient Wide-Range Voltage Conversion from Sub-Threshold to I/O Voltage,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 3, pp697-706, Mar. 2015.

[9] Victor P. Nelson, H. Troy Nagle, Bill D. Carroll, and J. David Irwin, “Digital Logic Circuit Analysis and Design,” Prentice-Hall, 1995.

[10] B. van Liempd et al., “A 3µW fully-differential RF envelope detector for ultra-low power receivers,” 2012 IEEE International Symposium on Circuits and Systems, pp. 1496-1499, May 2012.

[11] K. Ueno, T. Hirose, T. Asai and Y. Amemiya, “A 300 nW, 15 ppm/circC, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs,” IEEE Journal of Solid-State Circuits, vol. 44, no. 7, pp. 2047-2054, July 2009.

[12] S. Pellerano, J. Alvarado, and Y. Palaskas, “A mm-wave power-harvesting RFID tag in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1627-1637, Aug. 2010.

[13] H. Gao, M. Matters-Kammerer, P. Harpe, D. Milosevic, U. Johannsen, A. van Roermund, and P. Baltus, “A 71 GHz RF energy harvesting tag with 8% efficiency for wireless temperature sensors in 65nm CMOS,” in Proc. IEEE Radio Frequency Integr. Circuits Symp., Jun. 2013, pp. 403-406.

[14] M. Tabesh, N. Dolatsha, A. Arbabian and A. M. Niknejad, “A Power-Harvesting Pad-Less Millimeter-Sized Radio,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 962-977, April 2015.

[15] H. Dagan, A. Shapira, A. Teman, A. Mordakhay and S. Jamesonet et al. , “A Low-Power Low-Cost 24 GHz RFID Tag With a C-Flash Based Embedded Memory,” IEEE J. Solid-State Circuits, vol. 49, no. 9, pp. 1942-1957, Sep. 2014.

[16] Wei-Min Lance Kuo, Jonathan P. Comeau, Joel M. Andrews, John D. Cressler, and Mark A. Mitchell, “Comparison of Shunt and Series/Shunt nMOS Single-Pole Double-Throw Switches for X-Band Phased Array T/R Modules,” 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 249-252, 10-12 Jan. 2007

[17] J. Lee et al., “Low Insertion-Loss Single-Pole-Double-Throw Reduced-Size Quarter-Wavelength HEMT Bandpass Filter Integrated Switches,” in IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3028-3038, Dec. 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔