( 您好!臺灣時間:2021/03/02 13:51
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chiang, Chen-Tin
論文名稱:50奈米鍺量子點/矽鍺殼 N-型金氧半光電晶體之研製與分析
論文名稱(外文):Fabrication and Characterization of 50 nm Ge-QD/SiGe Shell NMOS Phototransistor
指導教授(外文):Li, Pei-Wen
口試委員(外文):Tsui, Bing-YueLin, Horng-Chih
外文關鍵詞:Germanium Quantum DotsPhototransistor
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文透過一體成型之鍺量子點技術,應用於金氧半場效電晶體之通道區製作成鍺量子點/二氧化矽/矽鍺殼層之異質結構。同時利用蝕刻機台的參數調變研究,更加優化複晶矽鍺奈米柱的形成。不僅取得適合的蝕刻率,也讓複晶矽鍺奈米柱的輪廓更加陡直,使其在經過選擇性氧化形成鍺量子點時的位置掌控更為熟稔。而鍺量子點與矽鍺殼層間3 ~ 4 nm的二氧化矽則是解決了矽/鍺界面的晶格不匹配同時也作為閘極介電層,並以單晶、品質高的鍺量子點及矽鍺殼層作為光吸收層。閘極金屬則是選用可透光之氧化銦錫作為電極,製作出可垂直入射並適用於850 nm ~ 1550 nm近紅外光的光電晶體。
本論文透過改變矽基板type,從N-type矽改成P-type矽製作出閘氧化層3.5 nm、鍺量子點大小為50 nm的光電晶體。當元件開啟狀態時,不僅光電流提升,以光功率約4.7 nW、3.92 W、87.3 nW,波長850 nm、1310 nm及1550 nm光垂直入射下,光響應度分別為4255.3 A/W、1.58 A/W及38.9 A/W。另外以相同小功率照射所得的光響應度更是較同結構(鍺量子點大小、閘氧化層厚度)下的PMOS元件高出約2.3 ~ 6倍,顯示元件對於近紅外光波段的光響應度相當出色。
In this thesis, we used the technology of Germanium quantum dots in a single process forming to fabricated a heterostructure of Ge Quantum Dots/SiO2/SiGe shell in the channel of a MOSFET. In order to optimize the forming of poly-SiGe pillar, we tune the etcher not only to get the adaptive etching rate and more vertical profile, but also to further control the distribution of Ge quantum dots. The 3-4 nm-thickness SiO2 between Ge QD and SiGe shell acts the gate oxide, solved the lattice mismatch at interface of Si-Ge. For normal incidence optimal transmission and applied to wavelength 850 nm to 1550 nm, we get the single-crystallize, high quality Ge QDs and SiGe shell for absorption layer and use ITO which is transparent as the gate electrode.
We change the type of silicon substrate from N-type to P-type to manufacture 50 nm QD-NMOS with 3.5 nm-thickness gate oxide. At on state, the photocurrent is more higher, in addition, under normal illumination of incident power about 4.7 nW, 3.92 W, 87.3 nW at wavelength of 850 nm, 1310 nm, and 1550 nm, we can get the photoresponsivity that is 4255.3 A/W, 1.58 A/W, and 38.9 A/W, respectively. In other hand, compared with the PMOS device with same condition in other structure parameters, size of Ge QDs and thickness of gate oxide, the photoresponsivity of NMOS is about 2.3 ~ 6 times higher than PMOS. Combine the measurement results above showing that the phototransistor has a great performance in the near-infrared ray regime.
摘要 i
Abstract ii
致謝 iv
目錄 vii
圖次 ix
第一章、簡介與研究動機 1
1-1 光通訊簡介 1
1-2 鍺應用於矽基光元件的優勢 2
1-3 鍺材沉積於矽基板之困難與應用發展 4
1-4 研究動機 6
1-5 研究架構 9
第二章、優化複晶矽鍺柱蝕刻之調變 17
2-1 前言 17
2-2 蝕刻調變之研究動機 18
2-2-1 Coil power/Platen power 調變 19
2-2-2 腔體壓力調變 19
2-2-3 蝕刻氣體比例調變 20
2-3 調變結果與應用 20
第三章、鍺量子點光電晶體元件製作流程 27
3-1 前言 27
3-2 元件製作流程 27
第四章、鍺量子點場效光電晶體量測結果與分析 43
4-1 前言 43
4-2 元件光電特性量測 43
4-2-1 未照光之電特性 43
4-2-2 照光後之電特性 44
4-3 元件照光特性分析 45
4-4 電性分析與討論 47
第五章、總結與未來展望 58
參考文獻 59
Vita 65
[1] M. Bohr, "The evolution of scaling from the homogeneous era to the heterogeneous era," 2011 international electron devices meeting, 2011, pp. 1.1. 1-1.1. 6, IEEE.
[2] G. E. Moore, "Cramming more components onto integrated circuits. Electronics, 38 (8), April 1965," VLSI Technologies and Architectures, 2010.
[3] N. Srivastava and K. J. J. Banerjee, "Interconnect challenges for nanoscale electronic circuits," Jom, vol. 56, no. 10, pp. 30-31, 2004.
[4] https://case.ntu.edu.tw/blog/?p=22022
[5] X. Chen, Y. Huo, S. Cho, B.-G. Park, J. S. Harris, "Surface Treatment of Ge Grown Epitaxially on Si by Ex-Situ Annealing for Optical Computing by Ge Technology," IEIE Transactions on Smart Processing & Computing, vol. 3, no. 5, pp. 331-337, 2014.
[6] J. Wang and S. J. S. Lee, "Ge-photodetectors for Si-based optoelectronic integration," Sensors, vol. 11, no. 1, pp. 696-718, 2011.
[7] S. Radovanovic, A.-J. Annema, and B. Nauta, "A 3-Gb/s optical detector in standard CMOS for 850-nm optical communication," IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp. 1706-1717, 2005.
[8] https://engineering.purdue.edu/gekcogrp/science-applications/ultra-scaled-FETs/mugfets/cmos/
[9] R. A. Soref, "Silicon-based optoelectronics," Proceedings of the IEEE, vol. 81, no. 12, pp. 1687-1706, 1993.
[10] J. Liu et al., "Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si," Optics express, vol. 15, no. 18, pp. 11272-11277, 2007.
[11] J. Liu, L. C. Kimerling, J. S. Michel, and Technology, "Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration," Semiconductor Science and Technology, vol. 27, no. 9, p. 094006, 2012.
[12] LaserFocusWorld, "SEMICONDUCTOR DETECTORS: Germanium on silicon approaches III-V semiconductors in performance," 2007.
[13] P. Ashu and C. C. Matthai, "A molecular dynamics study of the critical thickness of Ge layers on Si substrates," Applied Surface Science, vol. 48, pp. 39-43, 1991.
[14] F. LeGoues, B. Meyerson, and J. Morar, "Anomalous strain relaxation in SiGe thin films and superlattices," Physical review letters, vol. 66, no. 22, p. 2903, 1991.
[15] M. Currie, S. Samavedam, T. Langdo, C. Leitz, and E. Fitzgerald, "Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing," Applied Physics Letters, vol. 72, no. 14, pp. 1718-1720, 1998.
[16] J. Wang and S. Lee, "Ge-photodetectors for Si-based optoelectronic integration," Sensors, vol. 11, no. 1, pp. 696-718, 2011.
[17] S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, "Germanium-on-SOI infrared detectors for integrated photonic applications," IEEE Journal of selected topics in quantum electronics, vol. 12, no. 6, pp. 1489-1502, 2006.
[18] D. Eaglesham and M. Cerullo, "Dislocation-free stranski-krastanow growth of Ge on Si (100)," Physical review letters, vol. 64, no. 16, p. 1943, 1990.
[19] Y. Liu, M. D. Deal, and J. D. Plummer, "Rapid melt growth of germanium crystals with self-aligned microcrucibles on Si substrates," Journal of the Electrochemical society, vol. 152, no. 8, pp. G688-G693, 2005.
[20] R. W. Going, J. Loo, T.-J. K. Liu, and M. C. Wu, "Germanium gate PhotoMOSFET integrated to silicon photonics," IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, pp. 1-7, 2014.
[21] A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, "Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality," Applied physics letters, vol. 85, no. 14, pp. 2815-2817, 2004.
[22] T. Langdo, C. Leitz, M. Currie, E. Fitzgerald, A. Lochtefeld, and D. Antoniadis, "High quality Ge on Si by epitaxial necking," Applied Physics Letters, vol. 76, no. 25, pp. 3700-3702, 2000.
[23] R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, "Germanium wrap-around photodetectors on Silicon photonics," Optics Express, vol. 23, no. 9, pp. 11975-11984, 2015.
[24] V. Sorianello, G. De Angelis, A. De Iacovo, L. Colace, S. Faralli, and M. Romagnoli, "High responsivity SiGe heterojunction phototransistor on silicon photonics platform," Optics express, vol. 23, no. 22, pp. 28163-28169, 2015.
[25] P. Kostov, W. Gaberl, M. Hofbauer, and H. Zimmermann, "PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process," Solid-state electronics, vol. 74, pp. 49-57, 2012.
[26] S. Sahni, X. Luo, J. Liu, Y.-h. Xie, and E. Yablonovitch, "Junction field-effect-transistor-based germanium photodetector on silicon-on-insulator," Optics letters, vol. 33, no. 10, pp. 1138-1140, 2008.
[27] J. Wang, M. Yu, G. Lo, D.-L. Kwong, and S. Lee, "Silicon waveguide integrated germanium JFET photodetector with improved speed performance," IEEE Photonics Technology Letters, vol. 23, no. 12, pp. 765-767, 2011.
[28] A. K. Okyay, D. Kuzum, S. Latif, D. A. Miller, and K. C. Saraswat, "Silicon germanium CMOS optoelectronic switching device: Bringing light to latch," IEEE Transactions on electron devices, vol. 54, no. 12, pp. 3252-3259, 2007.
[29] A. K. Okyay, A. J. Pethe, D. Kuzum, S. Latif, D. A. Miller, and K. C. Saraswat, "SiGe optoelectronic metal-oxide semiconductor field-effect transistor," Optics letters, vol. 32, no. 14, pp. 2022-2024, 2007.
[30] P. Hashemi et al., "High-mobility high-Ge-content Si1− xGex-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x∼ 0.7, scaled EOT∼ 8.5 Å and∼ 10nm fin width," in 2015 Symposium on VLSI Circuits (VLSI Circuits), 2015, pp. T16-T17, IEEE.
[31] 邱詩暄, "矩陣效應對於高溫氧化矽鍺合金形成鍺奈米晶粒之結構與發光特性影響," 碩士論文, 國立交通大學, 民國 107 年.
[32] M.-H. Kuo et al., "Designer germanium quantum dot phototransistor for near infrared optical detection and amplification," Nanotechnology, vol. 26, no. 5, p. 055203, 2015.
[33] M.-H. Kuo, M.-C. Lee, H.-C. Lin, T. George, and P.-W. Li, "High photoresponsivity Ge-dot photoMOSFETs for low-power monolithically-integrated Si optical interconnects," Scientific reports, vol. 7, p. 44402, 2017.
[34] 郭銘浩, "量身訂作鍺量子點崁入式發射器與鍺量子點光偵測器應用於單石積體化矽光電晶片," 博士論文, 國立中央大學, 民國 107 年.
[35] K. H. Chen et al., "Precise Ge quantum dot placement for quantum tunneling devices," Nanotechnology, 21 055302, 2010.
[36] 薛垂宇, "矽鍺通道之垂直通心粉電晶體製程的可行性評估," 碩士論文, 國立交通大學, 民國 107 年.
[37] 黃宗琳, "鍺間隙子之動態分佈與量子電腦之鍺雙量子點系統設計," 碩士論文, 國立交通大學, 民國 108 年.
[38] 陳品荃, "鍺量子點閘極場效光電晶體之研製與光電特性分析," 碩士論文, 國立中央大學, 民國 104 年.
[39] 洪士淵, "鍺量子點光電晶體最佳化設計與實作之研究," 碩士論文, 國立中央大學, 民國 104 年.
[40] 張尹倫, "氮化矽波導整合鍺量子點光電晶體之研製及分析," 碩士論文, 國立交通大學, 民國 106 年.
電子全文 電子全文(網際網路公開日期:20240525)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔