跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 12:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昶安
研究生(外文):Chen, Chang-An
論文名稱:雙加熱氣相沉積系統製備P型氮化鎵薄膜電性分析
論文名稱(外文):Electrical properties of p type GaN film grown by two-heater MOCVD
指導教授:陳衛國
指導教授(外文):Chen, Wei-Kuo
口試委員:周武清
口試委員(外文):Chou, Wu-Ching
口試日期:2018-12-14
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:69
中文關鍵詞:P型氮化鎵有機金屬化學氣相沈積霍爾量測SIMS量測
外文關鍵詞:p-type GaNMOCVDHall measurementSIMS measurement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用實驗室自組式雙加熱有機金屬氣相沉積系統(Two-Heater MOCVD)成長 p 型氮化鎵薄膜,研究目的是為了成長保護長波長(橙 光,590nm)LED 主動發光層所需的低溫 p 型氮化鎵,因此我們透過研究不 同基板溫度,主要關注低溫(基板溫度:850°C)的部分,並搭配自組式雙加 熱 MOCVD 的上加熱溫度探討上加熱溫度對於成長低溫 p-GaN 時薄膜的 電學特性影響。
傳統 MOCVD 在磊晶溫度低於 950°C 會造成電阻率上升,而我們的雙 加熱 MOCVD 透過上加熱溫度在基板 800°C 時仍可維持電阻率 3(Ω ⋅ cm) 以下,與高溫相同電性品質。並且根據電中性分析,傳統系列雖然有較高 的 Mg 濃度和較低的 H 濃度,但由於過高的碳濃度(4x10E18cm-3)造成低溫 電洞濃度下降,而雙加熱系列在低溫擁有較低的碳濃度(5x10E17cm-3),因 此能使電洞濃度不會隨基板溫度下降。
而碳濃度增加主要牽涉到磊晶時碳融入效率,而碳融入效率和上加熱溫度 息息相關,當上加熱溫度降低至 1050°C 以下時,碳融入效率會開始劇 增。藉由阿瑞尼斯反應分析和腔體溫度模擬,推論出碳融入效率主要為前 驅物 TMGa 反應途徑中的 DMGa 之自由基反應在氣相裂解不全所導致。
In this thesis, we use the home-made Two-Heater MOCVD to grow the p-GaN thin films. The purpose of the study is to grow low temperature p-type GaN required to protect the active layer of long wavelength (orange, 590 nm) LEDs. We investigate on different substrate temperature. Main concerning the low-temperature growth (850°C), and with the unique ceiling temperature to discuss the ceiling temperature effect on the low-temperature p-GaN’s electrical properties.
The resistivity of p-GaN will rise while the substrate temperature lower than 950°C. For our T.H. MOCVD by using the ceiling temperature, we can maintain the resistivity below 3(Ω ⋅ cm) same as the high-temperature growth quality. According to the electrical neutral analysis, although the conventional series has a higher Mg concentration and a lower H concentration, hole concentration is lowered due to the excessive C concentration (4x101E8cm-3) at Ts=850°C . Compared with conventional series , the two-heater series has a lower C concentration (5x10E17cm-3) at Ts=850°C, so the hole concentration does not decrease with the substrate temperature.
The increase of C concentration mainly involves the efficiency of C in epitaxial deposition, and the efficiency of C incorporation is closely related to the ceiling temperature. When the ceiling temperature is lowered below 1050 °C, the efficiency of C incorporation will start to increase dramatically. Through the analysis of the Arrhenius reaction and the simulation of the cavity temperature, it is concluded that the C-inclusion efficiency is mainly caused by the incomplete gas phase cracking of the DMGa in the precursor TMGa reaction pathway.
目錄
中文摘要 ...............................................................................................i 英文摘要 .............................................................................................. ii 致謝 ....................................................................................................iv 目錄......................................................................................................v
圖目錄................................................................................................ vii 表目錄..................................................................................................x 一、 緒論............................................................................... ...........1
1.1 GaN(氮化鎵)材料簡介......................................................................1 1.2 P-GaN 發展歷史..............................................................................1 1.3 LED 產業簡介..................................................................................2 1.4 Amber LED 技術瓶頸.....................................................................4
二 量測儀器與原理................................................................................8
2.1 X光繞射........................................................................................8 2.2 霍爾量測....................................................................................10 2.3 二次離子質譜儀.........................................................................15
三、理論背景....................................................................................17
3.1 X光繞射對於差排缺陷的分析...................................................17
3.2 電中性原理..................................................................................18
3.3光與色彩......................................................................................31
四、樣品製備...................................................................................37
4.1 磊晶..............................................................................................37
4.2 活化退火..................................................................................39
4.3 濕蝕刻.......................................................................................40 4.4 電極製作...................................................................................41
五、結果與討論.............................................................................42
5.1 實驗簡介..................................................................................42
5.2 上加熱溫度對p-GaN薄膜電性..............................................42
5.3 上加熱溫度對碳濃度影響.........................................................56
六、結論............................................................................................65 參考文獻..............................................................................................66
1. H. Amano, M. Kito, K. Hiramatsu and I. J. J. J. o. A. P. Akasaki, 28 (12A), L2112 (1989).
2. S. Nakamura, T. Mukai, M. Senoh and N. J. J. J. o. A. P. Iwasa, 31 (2B), L139 (1992).
3. U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler and M. J. P. R. B. Maier, 62 (16), 10867 (2000).
4. C. G. Van de Walle and J. J. J. o. a. p. Neugebauer, 95 (8), 3851- 3879 (2004).
5. U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan and B. J. P. R. B. Santic, 59 (8), 5561 (1999).
6. A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang and P. J. A. P. E. Wen, 8 (5), 051001 (2015).
7. O. J. P. R. R. Philips’Gloeilampenfabrieken, 13 (1), 1-9 (1958).
8. P. Gay, P. Hirsch and A. J. A. C. Kelly, 7 (1), 41-49 (1954).
9. A. Kurtz, S. Kulin and B. J. J. o. A. P. Averbach, 27 (11), 1287-1290
(1956).
10. S. Lee, A. West, A. Allerman, K. Waldrip, D. Follstaedt, P. Provencio, D. Koleske and C. J. A. P. L. Abernathy, 86 (24), 241904 (2005).
11. S. Khromov, D. Gregorius, R. Schiller, J. Lösch, M. Wahl, M. Kopnarski, H. Amano, B. Monemar, L. Hultman and G. J. N. Pozina,
25 (27), 275701 (2014).
12. Z. Liliental-Weber, T. Tomaszewicz, D. Zakharov, J. Jasinski, M. O'keefe, S. Hautakangas, A. Laakso and K. J. M. O. P. L. A. Saarinen, 798 (2003).
13. Z. Liliental-Weber, T. Tomaszewicz, D. Zakharov and M. J. J. o. c. g. O’Keefe, 281 (1), 125-134 (2005).
14. P. Vennéguès, M. Leroux, S. Dalmasso, M. Benaissa, P. De Mierry, PLorenzini, B. Damilano, B. Beaumont, J. Massies and P. J. P. R. B. Gibart, 68 (23), 235214 (2003).
15. P. Vennegues, M. Benaissa, S. Dalmasso, M. Leroux, E. Feltin, P. De Mierry, B. Beaumont, B. Damilano, N. Grandjean, P. J. M. S. Gibart and E. B, 93 (1-3), 224-228 (2002).
16. T. Remmele, M. Albrecht, K. Irmscher, R. Fornari and M. J. A. P. L. Straßburg, 99 (14), 141913 (2011).
17. E. F. Schubert, N. Hunt, R. J. Malik, M. Micovic and D. L. J. J. o. L. T. Miller, 14 (7), 1721-1729 (1996).
18. F. Mireles and S. E. J. P. R. B. Ulloa, 58 (7), 3879 (1998).
19. W. Götz, N. Johnson, J. Walker, D. Bour and R. J. A. P. L. Street, 68 (5), 667-669 (1996).
20. L. Konczewicz, E. Litwin‐Staszewska, S. Contreras, R. Piotrzkowski and L. J. p. s. s. Dmowski, 246 (3), 658-663 (2009).
21. W. Götz, R. Kern, C. Chen, H. Liu, D. Steigerwald, R. J. M. S. Fletcher and E. B, 59 (1-3), 211-217 (1999).
22. S. M. Lee, M. A. Belkhir, X. Y. Zhu, Y. H. Lee, Y. G. Hwang and T. J. P. R. B. Frauenheim, 61 (23), 16033 (2000).
23. H. Ng, D. Doppalapudi, T. Moustakas, N. Weimann and L. J. A. p. l. Eastman, 73 (6), 821-823 (1998).
24. N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng and T. D. J. J. o. A. P. Moustakas, 83 (7), 3656-3659 (1998).
25. J. H. You, J.-Q. Lu and H. J. J. o. a. p. Johnson, 99 (3), 033706 (2006).
26. A. Wright and U. J. A. p. l. Grossner, 73 (19), 2751-2753 (1998). 27. K. Leung, A. Wright and E. J. A. p. l. Stechel, 74 (17), 2495-2497 (1999).
28. A. Uedono, M. Sumiya, S. Ishibashi, N. Oshima and R. Suzuki,presented at the Journal of Physics: Conference Series, 2014 (unpublished).
29. C. G. Van de Walle and J. J. N. Neugebauer, 423 (6940), 626 (2003).
30. J. Neugebauer and C. G. J. A. p. l. Van de Walle, 68 (13), 1829- 1831 (1996).
31. A. Wright, C. Seager, S. Myers, D. Koleske and A. J. J. o. a. p. Allerman, 94 (4), 2311-2318 (2003).
32. J. Neugebauer and C. G. J. P. r. l. Van de Walle, 75 (24), 4452 (1995).
33. Y. Nakagawa, M. Haraguchi, M. Fukui, S. Tanaka, A. Sakaki, K. Kususe, N. Hosokawa, T. Takehara, Y. Morioka and H. J. J. j. o. a. p. Iijima, 43 (1R), 23 (2004).
34. Y. Ohba and A. J. J. j. o. a. p. Hatano, 33 (10A), L1367 (1994). 35. A. Castiglia, J.-F. Carlin and N. J. A. P. L. Grandjean, 98 (21), 213505 (2011).
36. W. Wampler and S. J. J. o. a. p. Myers, 94 (9), 5682-5687 (2003). 37. J. Lyons, A. Janotti and C. J. P. R. B. Van de Walle, 89 (3), 035204 (2014).
38. M. Jacko and S. J. C. J. o. c. Price, 41 (6), 1560-1567 (1963).
39. D. Koleske, A. Wickenden, R. Henry and M. J. J. o. c. g. Twigg, 242 (1-2), 55-69 (2002).
40. J. Yang, D. Zhao, D. Jiang, P. Chen, Z. Liu, L. Le, X. Li, X. He, J. Liu and S. J. J. o. A. P. Zhang, 115 (16), 163704 (2014).
41. P. Kozodoy, S. Keller, S. DenBaars and U. J. J. o. c. g. Mishra, 195 (1-4), 265-269 (1998).
42. M. Fikri, A. Makeich, G. Rollmann, C. Schulz and P. J. T. J. o. P. C. A. Entel, 112 (28), 6330-6337 (2008).
43. A. F. J. J. o. a. p. Wright, 98 (10), 103531 (2005).
44. H. W. Jang, W. Urbanek, M. Yoo and J.-L. J. A. p. l. Lee, 80 (16), 2937-2939 (2002).
45. G. Parish, S. Keller, S. Denbaars and U. J. J. o. E. M. Mishra, 29 (1), 15-20 (2000).
46. T. G. Mihopoulos, V. Gupta and K. F. J. J. o. C. G. Jensen, 195 (1-4), 733-739 (1998).
47. A. Thon and T. F. J. A. p. l. Kuech, 69 (1), 55-57 (1996).
48. J. Schäfer, A. Simons, J. Wolfrum and R. A. J. C. P. L. Fischer, 319 (5-6), 477-481 (2000).
49. A. Y. Timoshkin and H. F. J. T. J. o. P. C. C. Schaefer Iii, 112 (36), 13816-13836 (2008).
50. M. Pristovsek, (2001).
51. Ö. Danielsson, X. Li, L. Ojamäe, E. Janzén, H. Pedersen and U. J. J. o. M. C. C. Forsberg, 4 (4), 863-871 (2016).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊