(3.235.108.188) 您好!臺灣時間:2021/02/25 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張桓誠
研究生(外文):Chang, Huan-Cheng
論文名稱:利用Nd:YVO4雷射研究 結構光與向量奇異點特徵
論文名稱(外文):Exploring the structured lights and the vector singularities in Nd:YVO4 Laser
指導教授:陳永富陳永富引用關係
指導教授(外文):Chen, Yung-Fu
口試委員:蘇冠暐梁興弛董容辰
口試委員(外文):Su, Kuan-WeiLiang, Shing-ChiTung, Jung-Chen
口試日期:2019-06-03
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:82
中文關鍵詞:結構光輸出鏡反射率幾何模態穩定腔長範圍向量奇異點偏振模態
外文關鍵詞:structured lightsoutput reflectancegeometric modestable cavity length rangevector singularitypolarizationpatterns
相關次數:
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將探討Nd:YVO4微晶體雷射在兩種情況下產生的模態。在第一種實驗中,我們在聚焦離軸下藉由改變輸出鏡反射率來產生a切Nd:YVO4雷射的幾何模態與簡併腔的穩定腔長範圍,更進一步以數值方法找出不同輸出鏡反射率在理論波函數中對應到的衰減值。另一種實驗,我們亦發現利用離焦微離軸的方法,可以在c切Nd:YVO4雷射的非簡併腔中產生出五種具向量奇異點特徵的特殊模態。我們將會研究它們的偏振特性,並針對其中兩種空心圓模態以拉蓋爾-高斯模態為基底重建模態的數值圖。
This thesis presents two kinds of patterns which are generated from the Nd:YVO4 microchip laser.In the first experiment,we use off-axis foused pumped a-cut Nd:YVO4 laser to generate geometric mode, research the relationship between the reflectance of output couplers and the stable range of the degenerate cavity length.Then we use numerical method to find the small loss parameters which correspond to different reflectance of output couplers in theory.In the second part,we use slightly off-axis circular pumped c-cut Nd:YVO4 laser to generate five types of vector singularity patterns in non-degenerate cavity.We research for their polarization and simulate the two type of circular patterns based on Laguerre-Gaussian mode.
目 錄
中文摘要 ……………………………………………………………………… i
英文摘要 ……………………………………………………………………… ii
誌謝 ……………………………………………………………………… iii
目錄 ……………………………………………………………………… iv
圖目錄 ...……………………………………………………………………vi

一、 研究背景…………………………………………………………………… 1
1.1雷射共振腔模態的研究價值………………………………………… 1
1.2論文架構……………………………………………………………… 2
二、 雷射共振腔模態基礎理論…………………………………………………… 3
2.1量子簡諧運動與對應原理…………………………………………… 3
2.1.1 一維量子簡諧運動.……………………….. ……………….. ……. ……. 3
2.1.2 二維量子簡諧運動.……………………….. ……………….. ……. ……. 7
2.2球型共振腔中的基本模態…………………………………………… 9
2.2.1 Hermite-Gaussian 模態……………………………………………… 9
2.2.2 Laguerre-Gaussian 模態………………………………………………12
三、 輸出耦合鏡反射率與幾何模態間的物理關係………………………………15
3.1 幾何模態與光線波動二象性………………………………………… 15
3.2 熱透鏡效應和書初耦合鏡反射率對簡併腔長的影響……………… 19
3.3 實驗架構………………………………………………………………… 20
3.4輸出耦合鏡反射率對1/4簡併腔穩定腔長範圍之影響…………… 23
3.5利用理論模型模擬不同衰減值的1/4幾何模態…………………… 32
四、 c切晶體非簡併腔中的特殊模態與其偏振特性…………………………… 37
4.1 Nd:YVO4晶體的雙折射特性對雷射模態的影響…………………… 37
4.2雷射模態中的向量奇異點……………………………………………… 40
4.3 GCSs模型…………………………………………………………… 46
4.4 實驗架構………………………………………………………………… 51
4.5用離焦微離軸法在非簡併腔激發的特殊模態及其偏振……………… 54
4.6利用Laguerre-Gaussian模態模擬空心圓模態及其偏振………………… 63
五、 結論與未來展望…………………………………………………………… 75
5.1結論……………………………………………………………………………… 75
5.2未來展望………………………………………………………………………… 77
六、 參考資料 …………………………………………………………………………..78
[1] Y. F. Chen, Y. P. Lan, and K. F. Huang, “Observation of quantum-classical correspondence from high-order transverse patterns,” Phys. Rev. A 68, 043803 (2003).
[2] I. Freund, “Polariztion flowers,” Opt. Commun. 199, 47 (2001).
[3] J. J. Sakurai, and J. J. Napolitano, Modern Quntum Mechanics (Pearson, 2011).
[4] D. J. Griffiths, Inroduction to Qunatum Mechanics, (Pearson, 1994).
[5] R. A. Serway, C. J. Moses, and C. A. Moyer, Modern Physics (Thomson, 2005).
[6] J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
[7] D. J. Griffiths, Introduction to Electrodynamics (Pearson, 1999).
[8] F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics (Pearson, 2007).
[9] A.E.Siegman, Lasers (University Science Books, 1986).
[10] T. Brand, B. Ozygus, and H. Weber, “Study of the Fabrication of the Channel Waveguide in Ti : Sapphire Layers,” Laser Phys. Lawrence, 8, 1 (1998).
[11] J. Erhard, H. Laabs, B. Ozygus, H. Weber, and Q. Zhang, “Diode-pumped multipath laser oscillators,” Proc. SPIE, 3611, 2 (1999).
[12] Q. Zhang, B. Ozygus and H. Weber, “Degeneration effects in laser
cavities,” Eur. Phys. J. Appl. 6, 293 (1999).
[13] J. Dingjan, M. P. van Exter, and J. P. Woerdman, “Geomeric mode in a single frequency Nd:YVO4 laser,” Opt. Commun. 188, 345 (2001).
[14] H. H. Wu and W. F. Hsieh, “Observations of multipass transverse modes in an axially pumped solid-state laser with different fractionally degenerate resonator configurations,” J. Opt. Soc. Am. B 18, 7 (2001).
[15] Y. F. Chen, C. H. Jiang, Y. P. Lan, and K. F. Huang, “Wave representation of geometrical laser beam trajectories in a hemiconfocal cavity,” Phys. Rev. A 69, 053807 (2004).
[16] A. A. Malyutin, “Modes of a plano-spherical laser resonator with the Gaussian gain distribution of the active medium,” Quantum Electron. 37(3), 299–306 (2007).
[17] A. A. Malyutin, “Closed laser-beam trajectories in plano-spherical resonators with Gaussian apertures,” Quantum Electron. 38(2), 181–186 (2008).
[18] Y. F. Chen, J. C. Tung, P. Y. Chiang, H. C. Liang, and K. F. Huang, “Exploring the effect of fractional degeneracy and the emergence of ray-wave duality in solid-state lasers with off-axis pumping,” Phys. Rev. A 88(1), 013827 (2013).
[19] D. R. Herriott, and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883 (1965).
[20] A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Compact femtosecond lasers based on novel multipass cavities,” IEEE J. Quantum Electron. 40, 519-528 (2004).
[21] A. A. Godil, B. A. Auld, and D. M. Bloom, “Picosecond timelenses,” IEEE J. Quantum Electron. 30, 827-837 (1994).
[22] C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21, 106-123 (2015).
[23] D. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23, 5900110 (2017).
[24] K. T. Gahagan, and G. A. Swartzlander, Jr. “Optical vortex trapping of particles,” Opt. Lett. 21, 827-829 (1996).
[25] K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Usingoptical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[26] K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto,
R. Morita, and T. Omatsu, “Transfer of light helicity to
Nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[27] G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007).
[28] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, B. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express. 12, 5448–5456 (2004).
[29] W. Koechner, Solid State Laser Engineering (Springer, 1971).
[30] F. Song, C. Zhang, X. Ding, J. Xu, and G. Zhang, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81, 2145–2147 (2002).
[31] B. Ozygus, and Q. Zhang, “Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes,” Appl. Phys. Lett. 71, 2590–2592 (1997).
[32] Y. F. Chen, T. H. Lu, and K. F. Huang, “Observation of spatially coherent polarization vector fields and visualization of vector singularities,” Phys. Rev. Lett. 96(3), 033901 (2006).
[33] K. F. Berggren, A. F. Sadreev, and A. A. Starikov, “Crossover from regular to irregular behavior in current flow through open billiards,” Phys. Rev. E 66, 016218 (2002).
[34] G. Blatter, M. V. Feigelman, and V. B. Geshkenbein, “Vortices in high-temperature superconductors,” Rev. Mod. Phys. 66, 1125 (1994).
[35] R. E. Prange, and M. Girvin, The Quantum Hall Effect, (Springer, 1990).
[36] M. V. Vasnetsov, and K. Staliunas, Optical Vortices, (Nova Science, 1999).
[37] M. S. Soskin, and M. V. Vasnetsov, Progress in Optics, (Wolf Elsevier, 2001).
[38] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, “Vortex Formation in a Stirred Bose-Einstein Condensate,” Phys. Rev. Lett. 84, 806 (2000).
[39] J .F. Nye, “Polarization effect in the diffraction of electromagnetic waves: the role of disclinations,” Proc. R. Soc. Lond. A 387, 105-132 (1983).
[40] M. Soskin, V. Denisenko, and R. Egorov, “Topological networks of paraxial ellipse specklefields,” J. Opt. A, Pure Appl. Opt. 6, S281 (2004).
[41] M. V. Berry, “The electric and magnetic polarization singularities of paraxial waves,” J. Opt. A, Pure Appl. Opt. 6, 475 (2004).
[42] T. H. Lu, Y. F. Chen, and K. F. Huang, “Generation of polarization-entangled optical coherent waves and manifestation of vector singularity patterns,” Phys. Rev. E 75, 026614 (2007).
[43] Y. H. Hsieh, Y. H. Lai, C. H. Tsou, H. C. Liang, K. F. Huang, and Y. F. Chen, “Experimental and theoretical explorations for optimizing high-power geometric modes in diodepumped solid-state lasers,” Laser Phys. Lett. 15, 075802 (2018)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔