(34.204.185.54) 您好!臺灣時間:2021/04/11 06:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉家豪
研究生(外文):Liu, Chia-Hao
論文名稱:動態充電電流調節技術利用精確電流控制和溫度控制技術之雙迴路以達到1.6倍快速的鋰離子充電技術且擁有高達99.6%的高準確充電電流
論文名稱(外文):Dynamic Charging Current Scaling Technique with Dual Accurate Current Control and Temperature Loops with a High Charging Current Accuracy up to 99.6% for 1.6X Fast Lithium-Ion Battery Charging
指導教授:陳科宏陳科宏引用關係
指導教授(外文):Chen, Ke-Horng
口試委員:黃立仁林清松
口試日期:2018-10-22
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:59
中文關鍵詞:鋰離子電池充電開關轉換器型電池充電溫度控制動態充電電流調節內部電阻檢測
外文關鍵詞:lithium-ion (Li-ion) battery chargerswitching-based battery chargertemperature controldynamic charge current scaling (DCCS)built-in resistance detection (BIRD)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要 i
ABSTRACT ii
Contents iv
Figure Captions vi
Table Captions viii
Chapter 1 Introduction 1
1.1 Background of Power Management for Battery Charger 1
1.2 Categorization of Power Supply Circuit 3
1.2.1 Linear-based Chargers 3
1.2.2 Pulse Chargers 4
1.2.3 Switching-based Chargers 7
1.3 Type of Switching-based Chargers 8
1.3.1 Basic Buck Converter Topologies for Battery Charger 9
1.3.2 Basic Boost Converter Topologies for Battery Charger 11
1.3.3 Basic Buck-Boost Converter Topologies for Battery Charger 12
1.4 Thesis Organization 15
Chapter 2 Prior Arts and Design Goals 16
2.1 Linear-based Battery Charger with Adaptive Supply Voltage (ASV) Control 16
2.2 Introduction of Built-In Resistance (BIR) 18
2.3 Smooth Control Linear-based Battery Charger with BIR Compensator 20
2.4 Adaptive off-Time Controlled Switching- based Charger with BIR Detection 23
2.5 Design Goals 26
2.5.1 The Impact on Temperature of Increasing Charging Current 26
2.5.2 The Accuracy on the Charging Current with Different Control Methods 28
Chapter 3 Proposed Dynamic Charging Current Scaling Technique with Dual Accurate Current Control and Temperature Loops with a High Accurate Charging Current for Fast Lithium-Ion Battery Charger 30
3.1 Architecture of Li-Ion Battery Charger 30
3.2 Proposed Accurate Current Control Technique 32
3.3 Optimal Design of the Control Loop 34
3.3.1 Design Considerations 34
3.3.2 Design of Compensation of Current Error Amplifier for Buck Converter 35
3.3.3 Design of Compensation of Current Error Amplifier for Boost Converter 36
3.4 The Superiority of the Proposed ACC Technique 37
Chapter 4 Circuit Implementations 39
4.1 Temperature Assisted Loop 39
4.1.1 GM-Controlled Oscillator 40
4.1.2 Frequency to Digital Converter 41
4.1.3 Operation of Temperature Assisted Loop 41
4.2 Built-In Resistor Detector 42
4.2.1 Adaptive Thermal Loss Calibration Technique 46
Chapter 5 Experimental Results 49
5.1 Chip Micrograph 49
5.2 Measured Scalable IBAT with DCCS Technique 50
5.3 Measured Mode Transition with Dual CC and CV Loop 51
5.4 Measured with BIRD Technique Enhancement 51
5.5 Statistic of the Proposed DCCS Technique 52
5.6 Comparisons of Other Charger Methodologies 54
Chapter 6 Conclusion and Future Work 56
6.1 Conclusion 56
6.2 Future Work 56
Reference 57
[1] L.-R. Chen, S.-L. Wu, D.-T. Shieh, and, T.-R. Chen, “Sinusoidal-ripple-current charging strategy and optimal charging frequency study for Li-ion batteries.” IEEE Trans. on Industrial Electronics, vol. 60, no. 1, pp. 88-97, Jan. 2013.
[2] T.-C. Huang, R.-H. Peng, T.-W. Tsai, K.-H. Chen, and C.-L. Wey, “Fast charging and high efficiency switching-based charger with continuous built-in resistance detection and automatic energy deliver control for portable electronics.” IEEE Journal of Solid-State Circuits, vol. 49, no. 7, pp. 1580-1594, Jul. 2014.
[3] C.-H. Lin, H.-W. Huang, and K.-H. Chen, “Built-in resistance compensation (BRC) technique for fast charging Li-Ion battery charger.” IEEE Custom Integrated Circuits Conference, pp. 33-36, Sep. 2008.
[4] M. Chen, and G. A. Rincón-Mora, “Accurate, compact, and power-efficient Li-ion battery charger circuit.” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 53, no. 11, pp. 1180-1184, Nov. 2006.
[5] C.-G. Kim, D.-H. Seo, J.-S. You, J.-H. Park, and B.-H. Cho, “Design of a contactless battery charger for cellular phone.” IEEE Trans. on Industrial Electronics, vol. 48, no. 6, pp. 1238-1247, Dec. 2001.
[6] R.-H. Peng, et al, “Switching-based charger with continuously built-in resistor detector (CBIRD) and analog multiplication-division unit (AMDU) for fast charging in Li-ion battery.” IEEE European Solid-State Circuits Conference, pp. 157-160, 2013.
[7] Y.-H. Jung, S.-K. Hong, and O.-K. Kwon, “Highly accurate and power-efficient battery charger with charging current compensator for wearable devices.” Electronics Letters, vol. 53, no. 7, pp. 461-463, Mar. 2017.
[8] C.-C. Tsai, C.-Y. Lin, Y.-S. Hwang, W.-T. Lee, and T.-Y. Lee, “A multi-mode LDO-based Li-ion battery charger in 0.35 μm CMOS technology.” IEEE Asia-Pacific Conference Circuits and Systems, vol. 1, pp. 49-52, Dec. 2004.
[9] M. J. Isaacson, R. P. Hollandsworth, P. J. Giampaoli, F. A. Linkowsky, A. Salim, and V. L. Teofilo, “Advanced lithium ion battery charger.” Battery Conference on Applications and Advances, pp. 193-198, Jan. 2000.
[10] C.-H. Lin, C.-Y. Hsieh, and K.-H. Chen, “A Li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging.” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 57, no. 2, pp. 506-517, Feb. 2010.
[11] Y.-S. Hwang, S.-C. Wang, F.-C. Yang, and J.-J. Chen, “New compact CMOS Li-ion battery charger using charge-pump technique for portable applications.” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 54, no. 4, pp. 705-712, Apr. 2007.
[12] S.-H. Yang, J.-W. Liu, and C.-C. Wang, “A single-chip 60-V bulk charger for series Li-ion batteries with smooth charge-mode transition.” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 59, no. 7, pp. 1588-1597, Jul. 2012.
[13] P. H. Van Quang, T. T. Ha, and J.-W Lee, “A Fully Integrated Multimode Wireless Power Charger IC with Adaptive Supply Control and Built-In Resistance Compensation.” IEEE Trans. Industrial Electronics, vol. 62, no. 2, pp. 1251-1261, Feb. 2015.
[14] G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, “Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode.” IEEE Trans. on power electronics, vol. 18, no. 2, pp. 696-703, Mar. 2003.
[15] L.-R. Chen, “Design of duty-varied voltage pulse charger for improving Li-ion battery-charging response.” IEEE Trans. on Industrial Electronics, vol. 56, no. 2, pp. 480-487, Feb. 2009.
[16] P.-J. Liu, and C.-H. Yen, “A fast-charging switching-based charger with adaptive hybrid duty cycle control for multiple batteries.” IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 1975-1983, Mar. 2017.
[17] M. G. Jeong, S. H. Kim, and C. Yoo, “Switching battery charger integrated circuit for mobile devices in a 130-nm BCDMOS process.” IEEE Trans. on Power Electronics, vol. 31, no. 11, pp. 7943-7952, Mar. 2017.
[18] M. Pahlevaninezhad, P. Das, J. Drobnik, P. K. Jain, and A. Bakhshai, “A ZVS interleaved boost AC/DC converter used in plug-in electric vehicles.” IEEE Trans. on Power Electronics, vol. 27, no. 8, pp. 3513-3529, Aug. 2012.
[19] Note, MAXIM Application, Tutorial 913, “Switch-mode, linear, and pulse charging techniques for Li+ Battery in mobile phones and PDAs.” pp. 12-27, Aug. 2002.
[20] J. Formenti, and R. Martinez, “Design trade-offs for switch-mode battery chargers.” Texas Instruments Portable Power Design Seminar, Jun. 2004.
[21] Y.-H. Jung, J.-H. Jung, H.-E. Jeong, J.-H. Jung, J.-S. An, H.-A. Ahn, S.-K. Hong and O. –K. Kwon, “A Fast and Highly-Accurate Battery Charger with Accurate Built-In Resistance Detection.” IEEE Trans. on Power Electronics, vol. 33, no. 12, Dec. 2018.
[22] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimizing duty-cycle perturbation of P&O MPPT technique.” IEEE Power Electronics Specialists Conference, vol. 3, pp. 1939-1944, 2004.
[23] J. Falin, and W. Li, “A boost-topology battery charger powered from a solar panel.” Analog Applications Journal, 2011.
[24] B. Sahu, and G. A. Rincón-Mora, “A low voltage, dynamic, noninverting, synchronous buck-boost converter for portable applications.” IEEE Trans. on power electronics, vol. 19, no. 2, pp. 443-452, Mar. 2004.
[25] C. Karnjanapiboon, Y. Rungruengphalanggul, and I. Boonyaroonate, “The low stress voltage balance charging circuit for series connected batteries based on buck-boost topology.” IEEE International Symposium on Circuits and Systems, vol. 3, pp. 284-287, 2003.
[26] J.-K. Shiau, and C.-W. Ma, “Li-ion battery charging with a buck-boost power converter for a solar powered battery management system.” Energies, vol. 6, no. 3, pp. 1669-1699, Mar. 2013.
[27] P.-J. Liu, and L.-H. Chien, “A High-Efficiency Integrated Multimode Battery Charger with an Adaptive Supply Voltage Control Scheme.” IEEE Trans. on Power Electronics, vol. 33 no. 8, pp. 6869-6876, Aug. 2018.
[28] S.-P. Hsu, A. Brown, L. Rensink, and R.-D Middlebrook. “Modelling and analysis of switching DC-to-DC converters in constant-frequency current-programmed mode.” IEEE Power Electronics Specialists Conference, pp. 284-301, Jun. 1979.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔