(3.238.249.17) 您好!臺灣時間:2021/04/13 18:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林晏霆
研究生(外文):Lin, Yen-Ting
論文名稱:具有最佳轉換比快速搜索方案的全積體多轉換比切換式電容直流對直流電壓轉換器
論文名稱(外文):A Fully-Integrated Multi-Ratio Switched-Capacitor DC-DC Converter with Fast Optimum Ratio Searching Scheme
指導教授:陳科宏陳科宏引用關係
指導教授(外文):Chen, Ke-Horng
口試委員:王清松黃立仁陳科宏
口試委員(外文):Wang, Ching-SungHuang, Li-RenChen, Ke-Horng
口試日期:2018-10-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:47
中文關鍵詞:直流-直流轉換器全積體電源管理動態電壓調節細粒度電壓轉換比率非對稱分流切換式電容最佳轉換比快速搜索方案
外文關鍵詞:DC-DC converterfully integrated power managementdynamic voltage scaling (DVS)fine-grained voltage conversion ratios (VCRs)asymmetrical shunt switched-capacitor (ASSC)fast optimum ratio searching (FORS) scheme
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要 i
ABSTRACT ii
誌 謝 iii
Contents iv
Figure Captions vi
Table Captions viii
Chapter 1 Introduction 1
1.1 Background of Fully-Integrated Power Management 1
1.2 Category of Fully-Integrated Voltage Regulators 2
1.2.1 On-chip inductive power converters 3
1.2.2 Packaged bondwire-based inductive power converters 4
1.2.3 Capacitor-less linear regulators 5
1.2.4 Switched-capacitor DC-DC converters 6
1.2.5 Comparison 8
1.3 Motivation 9
1.4 Thesis Organization 9
Chapter 2 Prior Arts and Design Goals 10
2.1 Fundamental Analysis of Switched-Capacitor Converters 10
2.2 Prior Arts of Multi-Ratio SC Converters 12
2.2.1 Conversion efficiency versus conversion ratio 12
2.2.2 Successive-approximation SC converter 13
2.2.3 Recursive SC converter 14
2.2.4 Negator-based SC converter 16
2.3 Design Goals 17
Chapter 3 Proposed Asymmetrical Shunt SC Converter 18
3.1 Architecture of ASSC Converter 18
3.2 Charge Flow Analysis and Component Optimization 20
3.3 Loss Analysis and Comparison 23
3.3.1 Analysis of slow-switching limit impedance and performance metric 23
3.3.2 Analysis of bottom-plate parasitic loss and performance metric 26
Chapter 4 Design and Circuit Implementation 28
4.1 Structure of Three-Stage ASSC Converter 28
4.2 ARC Circuit 32
4.3 FORS Scheme 33
Chapter 5 Measurement Results 36
5.1 Chip Micrograph 36
5.2 FORS Scheme and Load-Transient Response 37
5.3 Reference Tracking Response 39
5.4 Statistic Results and Comparison Table 40
Chapter 6 Conclusion and Future Work 43
Reference 44
[1] S. Kudva and R. Harjani, “Fully-integrated on-chip DC-DC converter with a 450 × output range,” IEEE J. Solid-State Circuits, vol. 46, no. 8, pp. 1940–1951, Aug. 2011.
[2] C. Huang and P. K. T. Mok, “A 100 MHz 82.4% efficiency package-bondwire based four-phase fully-integrated buck converter with flying capacitor for area reduction,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 2977–2988, Dec. 2013.
[3] S. R. Sanders, E. Alon, H.-P. Le, M. D. Seeman, M. John, and V. W. Ng, “The road to fully integrated DC-DC conversion via the switched-capacitor approach,” IEEE Trans. Power Electron., vol. 28, no. 9, pp. 4146–4155, Sep. 2013.
[4] D. Somasekhar et al., “Multi-phase 1 GHz voltage doubler charge pump in 32 nm logic process,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 751–758, Apr. 2010.
[5] G. V. Piqué, “A 41-phase switched-capacitor power converter with 3.8mV output ripple and 81% efficiency in baseline 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2012, pp. 98–100.
[6] T. M. V. Breussegem and M. S. J. Steyaert, “Monolithic capacitive DC-DC converter with single boundary-multiphase control and voltage domain stacking in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1715–1727, Jul. 2011.
[7] N. Butzen and M. Steyaert, “A 1.1 W/mm2-power-density 82%-efficiency fully integrated 3:1 switched-capacitor DC-DC converter in baseline 28 nm CMOS using stage outphasing and multiphase soft-charging,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 178–179.
[8] N. Butzen and M. S. J. Steyaert, “Design of soft-charging switched-capacitor DC-DC converters using stage outphasing and multiphase soft-charging,” IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3132–3141, Dec. 2017.
[9] N. Butzen and M. Steyaert, “A 94.6%-efficiency fully integrated switched-capacitor DC-DC converter in baseline 40nm CMOS using scalable parasitic charge redistribution,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2016, pp. 220–221.
[10] N. Butzen and M. S. J. Steyaert, “Scalable parasitic charge redistribution: Design of high-efficiency fully integrated switched-capacitor DC-DC converters,” IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 2843–2853, Dec. 2016.
[11] T. Tong, S. K. Lee, X. Zhang, D. Brooks, and G.-Y. Wei, “A fully integrated reconfigurable switched-capacitor DC-DC converter with four stacked output channels for voltage stacking applications,” IEEE J. Solid-State Circuits, vol. 51, no. 9, pp. 2142–2152, Sep. 2016.
[12] S. K. Lee, T. Tong, X. Zhang, D. Brooks, and G.-Y. Wei, “A 16-core voltage-stacked system with an integrated switched-capacitor DC-DC converter,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2015, pp. C318–C319.
[13] S. Bang, J.-S. Seo, L. Chang, D. Blaauw, and D. Sylvester, “A low ripple switched-capacitor voltage regulator using flying capacitance dithering,” IEEE J. Solid-State Circuits, vol. 51, no. 4, pp. 919–929, Apr. 2016.
[14] T.M. Andersen et al., “A sub-ns response on-chip switched-capacitor DC-DC voltage regulator delivering 3.7W/mm2 at 90% efficiency using deep-trench capacitors in 32nm SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 90–91.
[15] D. El-Damak, S. Bandyopadhyay, and A. P. Chandrakasan, “A 93% efficiency reconfigurable switched-capacitor DC-DC converter using on-chip ferroelectric capacitors,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 374–375.
[16] V. Ng and S. Sanders, “A 92%-efficiency wide-input-voltage-range switched-capacitor DC-DC converter,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2012, pp. 282–283.
[17] Y. K. Ramadass and A. P. Chandrakasan, “Voltage scalable switched capacitor DC-DC converter for ultra-low-power on-chip applications,” in Proc. IEEE Power Electron. Spec. Conf., 2007, pp. 2353–2359.
[18] Y. K. Ramadass, A. A. Fayed, and A. P. Chandrakasan, “A fully-integrated switched-capacitor step-down DC-DC converter with digital capacitance modulation in 45nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2557–2565, Dec. 2010.
[19] R. Jain et al., “A 0.45–1 V fully-integrated distributed switched capacitor DC-DC converter with high density MIM capacitor in 22nm tri-gate CMOS,” IEEE J. Solid-State Circuits, vol. 49, no. 4, pp. 917–927, Apr. 2014.
[20] B. Nguyen, N. Tang, W. Hong, Z. Zhou, and D. Heo, “High-efficiency fully integrated switched-capacitor voltage regulator for battery-connected applications in low-breakdown process technologies,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6858–6868, Aug. 2018.
[21] A. Sarafianos and M. Steyaert, “Fully integrated wide input voltage range capacitive DC-DC converters: The folding Dickson converter,” IEEE J. Solid-State Circuits, vol. 50, no. 7, pp. 1560–1570, Jul. 2015.
[22] A. Sarafianos, J. Pichler, C. Sandner, and M. Steyaert, “A folding Dickson-based fully integrated wide input range capacitive DC-DC converter achieving Vout/2-resolution and 71% average efficiency,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2015, pp. 1–4.
[23] C. K. Teh and A. Suzuki, “A 2-output step-up/step-down switched-capacitor DC-DC converter with 95.8% peak efficiency and 0.85-to-3.6V input voltage range,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2016, pp. 222–223.
[24] A. Sarafianos and M. Steyaert, “A modelling and design approach for push/pull switched capacitor DC-DC converters,” in Proc. IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Jun. 2016, pp. 1–6.
[25] X. Wu et al., “A 66pW discontinuous switch-capacitor energy harvester for self-sustaining sensor applications,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2016, pp. 90–91.
[26] H.-P. Le, J. Crossley, S. R. Sanders, and E. Alon, “A sub-ns response fully integrated battery-connected switched-capacitor voltage regulator delivering 0.19W/mm2 at 73% efficiency,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 372–373.
[27] M. D. Seeman and S. R. Sanders, “Analysis and optimization of switched-capacitor DC-DC converters,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 841–851, Mar. 2008.
[28] M. D. Seeman, “A design methodology for switched-capacitor DC-DC converters,” Ph.D. dissertation, EECS Department, Univ. California, Berkeley, CA, USA, 2009.
[29] S. Bang, D. Blaauw, and D. Sylvester, “A successive-approximation switched-capacitor DC-DC converter with resolution of V_IN/2^N for a wide range of input and output voltages,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 543–556, Feb. 2016.
[30] L. G. Salem and P. P. Mercier, “A recursive switched-capacitor DC-DC converter achieving 2^N-1 ratios with high efficiency over a wide output voltage range,” IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2773–2787, Dec. 2014.
[31] L. G. Salem and P. P. Mercier, “A battery-connected 24-ratio switched capacitor PMIC achieving 95.5%-efficiency,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2015, pp. C340–C341.
[32] W. Jung, D. Sylvester, and D. Blaauw, “A rational-conversion-ratio switched-capacitor DC-DC converter using negative-output feedback,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2016, pp. 218–219.
[33] D. Lutz, P. Renz, and B. Wicht, “A 10mW fully integrated 2-to13V-input buck-boost SC converter with 81.5% peak efficiency,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2016, pp. 224–225.
[34] Y. Jiang, M.-K. Law, P.-I. Mak, and R. P. Martins, “A 0.22-to-2.4V-input fine-grained fully integrated rational buck-boost SC DC-DC converter using algorithmic voltage-feed-in (AVFI) topology achieving 84.1% peak efficiency at 13.2mW/mm2,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 422–424.
[35] Y.-T. Lin et al., “Unsymmetrical parallel switched-capacitor (UP-SC) regulator with fast searching optimum ratio technique,” in Proc. 43rd Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2017, pp. 287–290.
[36] S. Bang, A. Wang, B. Giridhar, D. Blaauw, and D. Sylvester, “A fully integrated successive-approximation switched-capacitor DC-DC converter with 31mV output voltage resolution,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 370–371.
[37] L. G. Salem and P. P. Mercier, “An 85%-efficiency fully integrated 15-ratio recursive switched-capacitor DC-DC converter with 0.1-to-2.2V output voltage range,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 88–89.
[38] S.-Q. Chen et al., “A high efficiency and fast transient digital low-dropout assisted switched-capacitor converter for EMI-free Internet of Everything (IoE) systems,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2017, pp. 129–132.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔