(3.227.235.183) 您好!臺灣時間:2021/04/13 10:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃彥岳
研究生(外文):Huang, Yen-Yeuh
論文名稱:基於任務座標系之CNC工具機多層迴路輪廓控制
論文名稱(外文):Multi-Loop Contouring Control of CNC Machines based on Task Space Coordinate Frame
指導教授:蕭得聖
指導教授(外文):Hsiao, Te-Sheng
口試委員:李慶鴻葉賜旭謝鎮洲
口試委員(外文):Lee, Ching-HungYeh, Syh-ShiuhHsieh, Chen-Chou
口試日期:2018-10-16
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:97
中文關鍵詞:輪廓控制切線-法線任務座標轉換迴授線性化CNC工具機多層控制迴路協調運動速度估測器
外文關鍵詞:Contouring ControlTask Space Coordinate FrameFeedback LinearizationComputer-Nummerical-ControlMulti-Loop ControlSynchronized MotionVelocity Estimator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:1
在傳統CNC控制系統中,無論是單軸還是多軸控制,其控制概念都是希望藉由降低各軸之追跡誤差,以降低最終加工誤差。但是,以追跡方式作為控制法則的前提必須各軸運動時彼此不會互相影響,然而實際之工具機並非如此。
本研究以降低輪廓誤差為目的,提出一套多層迴路任務座標框架控制法則,能夠應用於任意階數與任意延遲之系統,搭配飽和權重之參數設定,提高多層迴路控制器的穩健性,並針對內層速度迴路的回授量化雜訊問題,提出一套速度估測器,藉此解決多層迴路系統因雜訊干擾產生過大的補償命令,避免控制輸入飽和之問題。
本研究之多層迴路輪廓控制系統實現於東台CNC車床TC-2000之XZ平台,並與常見之各軸獨立追跡誤差控制器比較。在實際循圓測試中,多層迴路任務框架控制器對於馬達內部編碼器所量測之輪廓誤差,能提供57%之改善,以循圓測試儀量測,對真圓度也能提供約11.8%之改善;在低速度高曲率軌跡的實驗,多層迴路任務框架控制器對於最大輪廓誤差,能提供約66%之改善,高速度高曲率軌跡的實驗,則是能提供約60%之改善。
In the traditional CNC control system, no matter how many axes the CNC machine has, the control objective is to increase the quality of the final machined products through the small tracking error of each axis. The premise that the small tracking error guarantees good machining quality relies on independency of each axes; however, the real machine tool is not the case.
This motivates the research in this thesis. A new multi-loop control architecture based on the task coordinate frame rule is proposed that can be applied to systems with any order and arbitrary delay, so that better contouring control accuracy can be achieved. Besides, we use a saturation weighting parameter to improve the robustness of this multi-loop contouring controller. Moreover, a velocity estimator is proposed to eliminate feedback quantization noise in the inner velocity loop, which can prevent the controller from generating excessive compensation commands due to quantization interference.
The multi-loop contour control method of this study is realized on the XZ-table of Tongtai CNC lathe TC-2000, and the experimental results are compared with those of the common single-axis tracking control method. In the circular trajectory experiment, the multi-loop task coordinate frame controller can improve the contouring control performance by 57% based on the measurments of motor encoders, and improve the roundness by 11.8% based on the measurements of the double ball-bar. Additionally, in the experiment of the low speed and large curvature trajectory, the multi-loop task coordinate frame controller can improve the maxumium contour error by 66%, while in the experiment of the high speed and large curvature trajectory, the improvement is 60%.
目錄

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1. 研究背景 1
1.2. 研究目的與發展概況 2
1.3. 研究貢獻 3
1.4. 論文架構 4
第二章 相關研究 5
2.1. 輪廓控制技術 5
2.1.1 輪廓誤差與追跡誤差之定義 5
2.1.2 輪廓控制器比較與特點分析 6
2.2. TCF控制器之設計方法 8
2.3. 極點/零點對消法則與回授線性化 12
第三章 多層迴路任務座標框架系統設計(MTCF) 17
3.1. 多層迴路任務座標框架控制策略(MTCF) 17
3.2. MTCF之內層速度控制器(MTCF-V) 19
3.2.1 速度/轉矩轉移函數(Transfer Function) 20
3.2.2 任務座標系轉換 23
3.2.3 MTCF之速度控制器設計 24
3.3. MTCF之外層輪廓控制器(MTCF-C) 27
3.3.1 MTCF之內層閉迴路分析 27
3.3.2 MTCF之位置控制器 Cpp 設計 30
3.3.3 MTCF之輪廓控制器 Cp 設計 31
第四章 多層迴路任務座標框架分析與改善 37
4.1. MTCF控制架構分析 37
4.2. 速度估測器 38
4.2.1 速度估測器之設計 38
4.3. 摩擦力補償 43
4.3.1 建立摩擦力模型 43
4.3.2 摩擦力補償策略 46
第五章 控制器參數設計與模擬 49
5.1. 控制器參數設計 49
5.1.1 系統鑑別 49
5.1.2 控制器參數設計 53
5.2. 模擬結果與分析 61
5.2.1 理想條件之模擬測試 62
5.2.2 非理想條件之模擬測試 66
第六章 實驗結果與討論 74
6.1. 硬體架構 74
6.1.1 XZ平台 74
6.1.1 上位控制器 75
6.2. 實驗結果分析 76
6.2.1 實驗參數調整 76
6.2.2 循圓測試 – 雙球棒量測結果 80
6.2.3 循圓測試 – 光學尺量測結果 82
6.2.4 橢圓軌跡測試 - 馬達編碼器量測結果 84
6.2.5 橢圓軌跡測試 - 光學尺量測結果 89
第七章 結論 92
7.1. 研究總結 92
7.2. 未來展望 93
參考文獻 94
參考文獻

[1] K. Blaedel, "Error reduction," Technol. Machine Tools, vol. 5, 1980.
[2] M. Donmez, L. Kang, C. Liu, and M. Barash, "A real-time error compensation system for a computerized numerical control turning center," in Proceedings. 1986 IEEE International Conference on Robotics and Automation, 1986, vol. 3, pp. 172-176.
[3] A. G. Ulsoy and Y. Koren, "Control of Machining Processes," Journal of Dynamic Systems, Measurement, and Control, vol. 115, no. 2B, pp. 301-308, 1993.
[4] E. J. A. Armarego and N. P. Deshpande, "Computerized Predictive Cutting Models for Forces in End-Milling Including Eccentricity Effects," CIRP Annals, vol. 38, no. 1, pp. 45-49, 1989/01/01/ 1989.
[5] J. W. Sutherland and R. E. DeVor, "An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems," Journal of Engineering for Industry, vol. 108, no. 4, pp. 269-279, 1986.
[6] J. Tlusty and P. MacNeil, Dynamics of cutting forces in end milling. 1975, pp. 21-25.
[7] M. Tomizuka, Zero Phase Error Tracking Algorithm for Digital Control. ASME. J. Dyn. Sys., Meas., Control. 1987;109(1):65-68..
[8] G. T. Chiu and M. Tomizuka, "Contouring control of machine tool feed drive systems: a task coordinate frame approach," IEEE Transactions on Control Systems Technology, vol. 9, no. 1, pp. 130-139, 2001.
[9] P. Sarachik and J. R. Ragazzini, "A 2-dimensional feedback control system," Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, vol. 76, no. 2, pp. 55-61, 1957.
[10] Y. Koren, "Cross-Coupled Biaxial Computer Control for Manufacturing Systems," Journal of Dynamic Systems, Measurement, and Control, vol. 102, no. 4, pp. 265-272, 1980.
[11] Y. Koren and C. C. Lo, "Variable-Gain Cross-Coupling Controller for Contouring," CIRP Annals, vol. 40, no. 1, pp. 371-374, 1991/01/01/ 1991.
[12] J.-H. Chin and T.-C. Lin, "Cross-coupled precompensation method for the contouring accuracy of computer numerically controlled machine tools," International Journal of Machine Tools & Manufacture, vol. 37, pp. 947-967, 1997.
[13] S.-S. Yeh and P.-L. Hsu , "Estimation of the contouring error vector for the cross-coupled control design," IEEE/ASME Transactions on Mechatronics, vol. 7, no. 1, pp. 44-51, 2002.
[14] C. Hu, B. Yao, and Q. Wang, "Global Task Coordinate Frame-Based Contouring Control of Linear-Motor-Driven Biaxial Systems With Accurate Parameter Estimations," IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 5195-5205, 2011.
[15] B. Yao, C. Hu, and Q. Wang, "An Orthogonal Global Task Coordinate Frame for Contouring Control of Biaxial Systems," IEEE/ASME Transactions on Mechatronics, vol. 17, no. 4, pp. 622-634, 2012.
[16] Y. Yoon, E. Jung, and S. Sul, "Application of a Disturbance Observer for a Relative Position Control System," IEEE Transactions on Industry Applications, vol. 46, no. 2, pp. 849-856, 2010.
[17] Y.-C. Ma, "Multi-Loop Servo Motor Position Control with an Iterative Learning Controller in the Velocity Loop," Master, Institute of Electrical and Control Engineering, National Chiao-Tung University, Hsinchu, Taiwan, Republic of China, 2016.
[18] Y. X. Su, C. H. Zheng, S. Dong, and B. Y. Duan, "A simple nonlinear velocity estimator for high-performance motion control," IEEE Transactions on Industrial Electronics, vol. 52, no. 4, pp. 1161-1169, 2005.
[19] S.-H. Song and S.-K. Sul , "An instantaneous speed observer for low speed control of AC machine," in APEC '98 Thirteenth Annual Applied Power Electronics Conference and Exposition, 1998, vol. 2, pp. 581-586 vol.2.
[20] Y. Hori, "Robust and adaptive control of a servomotor using low precision shaft encoder," in Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics, 1993, pp. 73-78 vol.1.
[21] 秦忆, 周永鹏, 邓忠华, 程善美, and 李叶松, 现代交流伺服系统. 华中理工大学出版社, 1995.
[22] 白玉成, "交流伺服系统控制策略及现场总线接口技术," 博士, 机械电子工程, 华中科技大学, 2009.
[23] C.-S. Huang, S.-S. Yeh, and P.-L. Hsu, "Estimation and Compensation of the LuGre Friction Model in High-Speed Micro-Motion Control," International Journal of Automation and Smart Technology; Vol 7, No 3 (2017), 09/01/ 2017.
[24] P. Dahl. (1968) A solid friction model.
[25] C. Canudas de Wit, H. Olsson, K. J. Astrom and P. Lischinsky, "A new model for control of systems with friction," IEEE Transactions on Automatic Control, vol. 40, no. 3, pp. 419-425, 1995.
[26] D. Karnopp, Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems. 1985.
[27] Z. Jamaludin, H. V. Brussel, and J. Swevers, "Friction Compensation of an XY Feed Table Using Friction-Model-Based Feedforward and an Inverse-Model-Based Disturbance Observer," IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 3848-3853, 2009.
[28] S.-M. Yang and S.-J. Ke , "Performance evaluation of a velocity observer for accurate velocity estimation of servo motor drives," IEEE Transactions on Industry Applications, vol. 36, no. 1, pp. 98-104, 2000.
[29] C. Ha, K. Rew, and K. Kim, "Robust Zero Placement for Motion Control of Lightly Damped Systems," IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3857-3864, 2013.
[30] K. A. Folly, "Robust controller design for small-signal stability enhancement of power systems," in 2004 IEEE Africon. 7th Africon Conference in Africa (IEEE Cat. No.04CH37590), 2004, vol. 1, pp. 631-636 Vol.1.
[31] M. P. D. Carmo, Differential Geometry of Curves and Surfaces. Englewood Cliffs, NJ: Prentice-Hall, 1976.
[32] T.-C. Chiu, "Coordination Control of Multiple Axes Mechanical Systems: Theory and Applications to Machining and Computer Disk File Systems," Ph.D. , Berkeley California, 1994.
[33] Y. Chang and T. Tsao, "Minimum-time contour tracking with model predictive control approach," in 2014 American Control Conference, 2014, pp. 1821-1826.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔