( 您好!臺灣時間:2021/04/14 09:38
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chen, Yen-Wei
論文名稱(外文):Low Power Front-End Readout Circuits Design for Non-invasive Continuous Photoplethysmography Blood Pressure Sensor
指導教授(外文):Huang, Sheng-Chieh
口試委員(外文):Chao, Chang-PoHuang, Sheng-ChiehHong, Hao-ChiaoLiao, Yu-Te
外文關鍵詞:Photoplethysmography (PPG)trans-impedance amplifiersecond-order 0.1Hz high-pass filterfourth-order 10Hz low-pass filterprogrammable gain amplifier (PGA)
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著人口老化,近年來個人化醫療照顧或個人健康監測系統是目前先進國家醫療發展之新趨勢,因此各種低功率、小面積與可攜式之生醫器材正在蓬勃發展。因此,一個準確生理偵測系統是迫切需要的,其中一新型光學式血壓感測器用於監測連續性血壓,其中一關鍵部分是前端類比電路。本研究是設計出一應用於光體積描述法的低功耗前端類比讀取電路,並將整體電路整合實現在單一晶片上,方便日後可以跟其他手持裝置做結合,提供使用者只需量測手腕部,就能監控個人生理資訊。本論文所提出一個低功耗、可程式化的類比前端讀取電路應用在光體積描述法(Photoplethysmograph, PPG)感測器用以量測血壓,其電路包含了電流電壓轉換器、二階0.1 Hz高通濾波器、四階10 Hz低通濾波器和可程式化增益放大器。此設計能夠將Photodiode(PD)獲得的生理訊號由電流轉成電壓,再透過0.1 Hz高通濾波器和10 Hz低通濾波器,將生理的低頻雜訊、直流偏移和外部所造成的高頻雜訊濾除,最後透過可編程增益放大器所提供的8個不同增益作調變,並使最終獲得的PPG訊號可以達到full dynamic range,讓訊號藉由ADC傳到後端數位運算時能達到最小的誤差。整體電路使用TSMC 0.18 μm製成來實現,整體晶片面積為1533.9 × 1636.2 μm2 (包含PAD),整體消耗為33 μW。
With population ageing, individualized medical health care is the trend of medical development and there is growing demand for low-power, small-area and portable biomedical equipment. To design a new optical blood pressure sensor, biomedical detection system which is accurate is urgently needed. This thesis focus on the design of low power front-end readout circuit for Photoplethysmography (PPG) sensor. All circuits are integrated in one single chip which is easy to combine with handheld device in the future. In this thesis, the low-power, programmable readout circuit is including trans-impedance amplifier (TIA), second-order 0.1 Hz high-pass filter, fourth-order 10 Hz low-pass filter and programmable amplifier (PGA). The physiological signal obtained from PD is converted from current to voltage by this circuit design. And then filter can eliminate the noise from dc drift, physiological and external high-frequency noise. Finally, PGA provides eight different gain to make PPG signal to be full dynamic range. To ensure the performance of the sensor, the PGA circuit are conducted to fully dynamic rage PPG signal for maximizing output signal towards high signal-to-noise (S/N) ratio. All circuits are fabricated in TSMC 0.18 μm process. The whole chip area is 1533.9 × 1636.2 μm2 and the power consumption is 33 μW.
摘要 i
誌 謝 iii
Contents iv
List of Figures vi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 1
1.3 Related Work 2
Chapter 2 Research Background 4
2.1 Photoplethysmography (PPG) signal 4
2.1.1 Principal of photoplethysmography (PPG) sensor 4
2.1.2 Beer–Lambert Law 5
2.1.3 PPG with banana-shaped 6
2.1.4 Reflected pulse transit time (R-PTT) 7
2.2 Blood Pressure 8
2.2.1 Continuous waveform of blood pressure 8
2.2.2 Systolic blood pressure (SBP) and diastolic blood pressure (DBP) 10
2.2.3 Blood pressure algorithm 10
Chapter 3 PPG Readout Circuit Designs 13
3.1 System Structure 13
3.2 Trans-impedance Amplifier (TIA) 14
3.2.1 Introduce the TIA circuit 14
3.2.2 TIA circuit design 15
3.3 Fourth-order 10Hz Low-pass Filter 16
3.3.1 Introduce the fourth-order 10Hz low-pass filter 16
3.3.2 CMOS low-pass filter architecture 17
3.3.3 Architecture of filter selection 18
3.3.4 The method of reducing the transduction value 19
3.3.5 Low power and low trans-conductance of OTA structure 21
3.3.6 Fourth order GM-C filter 23
3.4 Second-order 0.1Hz high-pass Filter 25
3.4.1 Introduce the second-order 0.1Hz high-pass filter 25
3.4.2 Pseudo resistor 25
3.4.3 OTA design and noise analyze 28
3.4.4 Low power design 30
3.4.5 High-pass filter structure 31
3.5 Programmable Gain Amplifier (PGA) 32
3.5.1 Introduce programmable gain amplifier 32
3.5.2 OTA design and noise analyze 33
Chapter 4 Simulation Result 34
4.1 Simulation Result of TIA 34
4.2 Simulation Result of Fourth-order 10Hz Low-pass Filter 35
4.3 Simulation Result of Second-order 0.1Hz High-pass Filter 37
4.4 Simulation Result of Programmable gain amplifier 41
4.5 Simulation Results of PPG Readout Circuit 44
Chapter 5 48
The Experiment Results 48
5.1 Experiment Results of Analog Readout Circuits 48
5.1.1 Experiment results of TIA 49
5.1.2 Experiment results of 0.1 Hz second order high-pass filter 50
5.1.3 Experiment results of TIA and filters 52
5.1.4 Experiment results of programmable gain amplifier 53
5.2 Experiment Results of Blood Pressure 54
5.3 Performance Comparison 56
Chapter 6 58
6.1 Conclusions 58
6.2 Future works 58
References 59
[1] Cardiovascular Diseases (CVDs), WHO, Geneva, Switzerland, 2015.
[2] S. Ahmad, M. Bolic, H. Dajani, V. Groza, I. Batkin, and S. Rajan, “Measurement of heart rate variability using an oscillometric blood pressure monitor,” IEEE Trans. Instrum. Meas., vol. 59, no. 10, pp. 2575–2590, Oct. 2010.
[3] P. Dupuis, and C. Eugene, “Combined detection of respiratory and cardiac rhythm disorders by high-resolution differential cuff pressure measurement,” IEEE Trans. Instrum. Meas., vol. 49, no. 3, pp. 498–502, Jun. 2000.
[4] V. R. Pamula, J. M. Valero-Sarmiento, L. Yan, A. Bozkurt, C. Van Hoof, N. Van Helleputte, & M. Verhelst, ” A 172μW Compressively Sampled Photoplethysmographic (PPG) Readout ASIC With Heart Rate Estimation Directly From Compressively Sampled Data,” IEEE transactions on biomedical circuits and systems, vol. 11, no. 3, pp. 487-496, 2017.
[5] J. Kim, J. Kim, & H. Ko, “Low-power photoplethysmogram acquisition integrated circuit with robust light interference compensation,” Sensors, vol. 16, no. 1, pp. 46, 2015.
[6] J. Allen, "Photoplethysmography and Its Application in Clinical Physiological Measurement," Physiological Measurement, vol. 28, no. 3, pp. 1-39, March 2007.
[7] R. Dresher, "Wearable Forehead Pulse Oximetry: Minimization of Motion and Pressure Artifacts," Master thesis, Biomedical Engineering, The Faculty of the Worcester Polytechnic Institute, 2006.
[8] J. Kraitl and H. Ewald, "Optical Non-invasive Methods for Characterization of The Human Health Status," presented at the 21st International Conference on Sensing Technology, Palmerston North, New Zealand, 2005.
[9] J. D. Ingle and S. R. Crouch, ”Spectrochemical Analysis,” Prentice Hall, NJ, 1988.
[10] E. M. C. Hillman, “Experimental and Theoretical Investigations of Near Infrared Tomographic Imaging Methods and Clinical Applications,” in Department of Medical Physics and Bioengineering. London: University College London, 2002, pp. 356.
[11] F. Peng, W. Wang, and H. Liu, “Development of a Reflective PPG Signal Sensor,” Biomedical Engineering and Informatics (BMEI), 2014 7th International Conference of IEEE, pp. 612-616. 08 January 2015.
[12] X. R. Ding, Y. T. Zhang, J. Liu, W. X. Dai, and H. K. Tsang, “Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio,” IEEE Transactions on Biomedical Engineering, vol. 63, no.5, pp. 964-972, 2016.
[13] A. C. Guyton, and J. E. Hall. Guyton and Hall Tectbook of Medical Physiology. (11e) Philadelphia: Elsevier Inc.
[14] Y. Miyauchi, S. Koyama, and H. Ishizawa, “Basic experiment of blood pressure measurement which uses FBG sensors,” in Proc. IEEE Int. Conf. Instrum. Meas., May 2013, pp. 1767–1770.
[15] A. I. Moens, “Die Pulscurve. Leiden,” J. Brill, 90, 1878.
[16] V. O. Rybynok, and P. A. Kyriacou, “Beer-lambert law along non-linear mean light pathways for the rational analysis of photoplethysmography,” Journal of Physics: Conference Series, vol. 238, no. 1, pp. 012061, 2010.
[17] J. Savoj and B. Razavi, “High Speed CMOS for Optical Receivers,” Kluwer Academic Publishing, 2001.
[18] K. Phang, “CMOS Optical Preamplifier Design Using Graphical Circuit Analysis,” Ph.D. thesis, Univ. Toronto, 2001
[19] W. Sansen, Analog Design Essentials, 2006, Springer.
[20] A. C. Carusone, & D. A. Johns, “A 5th order Gm-C filter in 0.25 µm CMOS with digitally programmable poles and zeroes,” In ISCAS, vol. 4, pp. 635-638, 2002.
[21] J. Lee, K. Hayatleh, F. J. Lidgey, & J. Drew, ”Tuneable linear transconductance cell for Gm-C filter applications,” Proc. IEEE ISCAS 2002, IV 253-256, Phoenix, Arizona, USA, May 2002.
[22] K. Hirano, & S. Nishimura, “Active RC filters containing periodically operated switches,” IEEE Transactions on Circuit Theory, vol. 19, pp. 253-260, 1972.
[23] M. Bialko, & R. W. Newcomb, “Generation of all finite linear circuits using the integrated DVCCS,” IEEE Transactions on Circuit Theory, vol. 18, no. 6, pp. 733-736, 1971.
[24] E. Vittoz, & J. Fellrath, “CMOS analog integrated circuits based on weak inversion operations,” IEEE journal of solid-state circuits, vol. 12, no. 3, pp. 224-231, 1977.
[25] A. Veeravalli, E. Sánchez-Sinencio, & J. Silva-Martínez, “Transconductance amplifier structures with very small transconductances: A comparative design approach,” IEEE Journal of Solid-State Circuits, vol. 37, no. 6, pp. 770-775, 2002.
[26] S. Koziel, & S. Szczepanski, “Design of highly linear tunable CMOS OTA for continuous-time filters,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, no. 2, pp. 110-122, 2002.
[27] S. Y. Lee, & C. J. Cheng, “Systematic design and modeling of a OTA-C filter for portable ECG detection,” IEEE Transactions on Biomedical Circuits and Systems, vol. 3, no. 1, pp. 53-64, 2009.
[28] U. Stehr, F. Henkel, L. Dalluge, & P. Waldow, “A fully differential CMOS integrated 4th order reconfigurable GM-C lowpass filter for mobile communication,” Proceedings of the 2003 10th IEEE International Conference on. vol. 1, pp. 144-147, 2003, December.
[29] X. Zou, X. Xu, L. Yao, & Y. Lian, “A 1-V 450-nW fully integrated programmable biomedical sensor interface chip,” IEEE journal of solid-state circuits, vol. 44, no.4, pp. 1067-1077, 2009.
[30] F. Gozzini, G. Ferrari, and M. Sampietro, “Linear transconductor with rail-to-rail input swing for very large time constant applications,” Electron.Lett., vol. 42, no. 19, pp. 1069–1070, 2006.
[31] Z. Kárász, R. Fiáth, P. Földesy, & Á. R. Vázquez, “Tunable low noise amplifier implementation with low distortion pseudo-resistance for in vivo brain activity measurement,” IEEE Sensors Journal, vol. 14, no. 5, pp. 1357-1363, 2014.
[32] E. A. Vittoz, “Micropower techniques” in Design of Analog-Digital VLSI Circuits for Telecommunications and Signal Processing, Upper Saddle River, NJ: Prentice-Hall, 1994, pp. 53–96.
[33] A. K. Wong, K. N. Leung, K. P. Pun, & Y. T. Zhang, ” A 0.5-Hz high-pass cutoff dual-loop transimpedance amplifier for wearable NIR sensing device,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 7, pp. 531-535, 2010.
[34] S. S. Sheng, S. C. Huang, T. H. Tran, K. Y. Shao, P. C. P. Chao & P. Y. Chiang, ” A 1.5 mW front-end readout circuit for a small-sized melanin sensor,” Microsystem Technologies, vol. 22, no. 6, pp. 1449-1465, 2016.
[35] Pamula, V. R., Valero-Sarmiento, J. M., Yan, L., Bozkurt, A., Van Hoof, C., N. Van Helleputte & M. Verhelst, “A 172uW Compressively Sampled Photoplethysmographic (PPG) Readout ASIC With Heart Rate Estimation Directly From Compressively Sampled Data,” IEEE transactions on biomedical circuits and systems, vol. 11, no. 3, pp. 487-496, 2017.
[36] Y. Li, A. K. Wong & Zhang, Y. T, ” Fully-integrated transimpedance amplifier for photoplethysmographic signal processing with two-stage Miller capacitance multiplier,” Electronics letters, vol. 46, no. 11, pp.745-746, 2010.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔