|
[1] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and L. Van Gool, “Towards End-to-End Lane Detection: an Instance Segmentation Approach,” arXiv e-prints, arXiv:1802.05591, arXiv:1802.05591, Feb. 2018. arXiv: 1802.05591 [cs.CV]. [2] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial As Deep: Spatial CNN for Traffic Scene Understanding,” arXiv e-prints, arXiv:1712.06080, arXiv:1712.06080, Dec. 2017. arXiv: 1712.06080 [cs.CV]. [3] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in 2011 IEEE Intelligent Vehicles Symposium (IV), Jun. 2011, pp. 163–168. [4] S. Kammel and B. Pitzer, “Lidar-based lane marker detection and mapping,” in 2008 IEEE Intelligent Vehicles Symposium, Jun. 2008, pp. 1137–1142. [5] M. Bertozzi and A. Broggi, “Gold: A parallel real-time stereo vision system for generic obstacle and lane detection,” IEEE Transactions on Image Processing, vol. 7, no. 1, pp. 62–81, Jan. 1998. [6] M. Aly, “Real time detection of lane markers in urban streets,” in 2008 IEEE Intelligent Vehicles Symposium, Jun. 2008, pp. 7–12. [7] J. Son, H. Yoo, S. Kim, and K. Sohn, “Real-time illumination invariant lane detection for lane departure warning system,” Expert Systems with Applications, vol. 42, no. 4, pp. 1816–1824, 2015. [8] Y. Xing, C. Lv, L. Chen, H. Wang, H. Wang, D. Cao, E. Velenis, and F. Wang, “Advances in vision-based lane detection: Algorithms, integration, assessment, and perspectives on acp-based parallel vision,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 3, pp. 645–661, May 2018. [9] A. Bar Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in road and lane detection: A survey,” Machine Vision and Applications, vol. 25, no. 3, pp. 727–745, Apr. 2014. [10] S. P. Narote, P. N. Bhujbal, A. S. Narote, and D. M. Dhane, “A review of recent advances in lane detection and departure warning system,” Pattern Recognition, vol. 73, pp. 216–234, 2018. [11] A. S. Huang, D. Moore, M. Antone, E. Olson, and S. Teller, “Finding multiple lanes in urban road networks with vision and lidar,” Autonomous Robots, vol. 26, no. 2, pp. 103–122, Apr. 2009. [12] Q. Li, N. Zheng, and H. Cheng, “An adaptive approach to lane markings detection,” in Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems, vol. 1, Oct. 2003, 510–514 vol.1. [13] A. López, J. Serrat, C. Cañero, F. Lumbreras, and T. Graf, “Robust lane markings detection and road geometry computation,” International Journal of Automotive Technology, vol. 11, no. 3, pp. 395–407, Jun. 2010. [14] S. Wu, H. Chiang, J. Perng, C. Chen, B. Wu, and T. Lee, “The heterogeneous systems integration design and implementation for lane keeping on a vehicle,” IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 2, pp. 246–263, Jun. 2008. [15] H. Deusch, J. Wiest, S. Reuter, M. Szczot, M. Konrad, and K. Dietmayer, “A random finite set approach to multiple lane detection,” in 2012 15th International IEEE Conference on Intelligent Transportation Systems, Sep. 2012, pp. 270–275. [16] J. Wang, Y. Wu, Z. Liang, and Y. Xi, “Lane detection based on random hough transform on region of interesting,” in The 2010 IEEE International Conference on Information and Automation, Jun. 2010, pp. 1735–1740. [17] S. Zhou, Y. Jiang, J. Xi, J. Gong, G. Xiong, and H. Chen, “A novel lane detection based on geometrical model and gabor filter,” in 2010 IEEE Intelligent Vehicles Symposium, Jun. 2010, pp. 59–64. [18] E. Romera, L. M. Bergasa, and R. Arroyo, “Can we unify monocular detectors for autonomous driving by using the pixel-wise semantic segmentation of CNNs?” arXiv e-prints, arXiv:1607.00971, arXiv:1607.00971, Jul. 2016. arXiv: 1607.00971 [cs.CV]. [19] J. Kim and M. Lee, “Robust lane detection based on convolutional neural network and random sample consensus,” in Neural Information Processing, C. K. Loo, K. S. Yap, K. W. Wong, A. Teoh, and K. Huang, Eds., Cham: Springer International Publishing, 2014, pp. 454–461. [20] S. Lee, J. Kim, J. S. Yoon, S. Shin, O. Bailo, N. Kim, T.-H. Lee, H. S. Hong, S.-H. Han, and I. S. Kweon, “VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition,” arXiv e-prints, arXiv:1710.06288, arXiv:1710.06288, Oct. 2017. arXiv: 1710.06288 [cs.CV]. [21] J. Hur, S. Kang, and S. Seo, “Multi-lane detection in urban driving environments using conditional random fields,” in 2013 IEEE Intelligent Vehicles Symposium (IV), Jun. 2013, pp. 1297–1302. [22] A. B. Lopez, C. Cañero, J. Serrat, J. Saludes, F. Lumbreras, and T. Graf, “Detection of lane markings based on ridgeness and ransac,” Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005., pp. 254– 259, 2005. [23] T. Veit, J. Tarel, P. Nicolle, and P. Charbonnier, “Evaluation of road marking feature extraction,” in 2008 11th International IEEE Conference on Intelligent Transportation Systems, Oct. 2008, pp. 174–181. [24] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing. San Diego, CA, USA: California Technical Publishing, 1997, isbn: 0-9660176-3-3. [25] Ren and Malik, “Learning a classification model for segmentation,” in Proceedings Ninth IEEE International Conference on Computer Vision, Oct. 2003, 10–17 vol.1. [26] C. Huang, B. Wu, and R. Nevatia, “Robust object tracking by hierarchical association of detection responses,” in ECCV , 2008. 27] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981. [28] TuSimple Inc., “TuSimple Benchmark Platform,” 2017. [Online]. Available: http://benchmark.tusimple.ai/. [29] H. Lin, L. Chen, Y. Lin, and M. Yu, “Lane departure and front collision warning using a single camera,” in 2012 International Symposium on Intelligent Signal Processing and Communications Systems, Nov. 2012, pp. 64–69.
|