(3.235.108.188) 您好!臺灣時間:2021/02/27 03:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃建霖
研究生(外文):Hunag, Jian-Lin
論文名稱:應用於光容積描述法血壓感測器之類比數位轉換器設計與實現
論文名稱(外文):Design and Implementation of Analog to Digital Converter for Photoplethysmographic Blood Pressure Sensor
指導教授:黃聖傑黃聖傑引用關係
指導教授(外文):Huang, Sheng-Chieh
口試委員:趙昌博王郁仁
口試委員(外文):Chao, Chang-PoWang, Yu-Jen
口試日期:2019-04-29
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:54
中文關鍵詞:光容積描述法多波長發光二極體類比數位轉換器三角積分調變器
外文關鍵詞:PhotoplethysmographicMulti-Wavelength LEDAnalog-to-Digital ConverterDelta-Sigma Modulator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著全球高齡化人口結構與生活模式的改變,個人化醫療照護與提供健康資訊的服務成為先進國家醫療發展之趨勢,而血壓為個人健康狀況的重要指標,目前市面上販售普遍為氣囊式血壓計,通常體積龐大,不容易攜帶,且使用時需要氣囊束帶綑綁,容易造成不舒適感。本論文將介紹一利用光容積描述法檢測血管內寫容量體積變化並且計算血壓值之系統,系統利用多波長發光二極體打入手腕橈動脈反射並由感光器接受產生電流訊號,電流訊號進入前端類比讀取電路進行電壓轉換、放大、濾波處理,再經由類比數位轉換器進入數位演算法得到生理資訊。本論文目的為設計一適用於血壓感測器前端讀取電路之類比數位轉換器。為了減少類比數位轉換後之誤差,因此設計一高解析度之類比數位轉換器,減少數位轉換後的扭曲失真,生理訊號位於極低頻頻帶,採用三角積分調變之架構。本論文之設計操作於1k Hz頻寬、SNDR為75.63 dB,有效位元(ENOB)為12.27位元,使用台積電TSMC 0.18 μm製程實現。本論文之設計結合前端讀取電路及後端演算法進行實驗,量測結果將與市售血壓計OMRON做比較。實驗結果的血壓誤差為-0.72 ± 5.24 mmHg,符合IEEE的非氣囊式血壓計標準中等級A之規範。
In the past few years, rapid growth of aged population and living habit change makes personal medical care become a hot topic in the developed countries. As the personal medical care becomes a trend, the requirement of wearable and portable medical instrument increases. A novel optical blood pressure (BP) sensor used for monitoring continuous blood pressure will be introduced in the thesis. The BP sensor consist of photoplethysmographic (PPG) sensor to collect biomedical signal by using photodiode detector. This collected PPG signal is converted into voltage, filtered and amplified through front-end readout circuit. The readout signal is then converted by ADC and sent to digital algorithm for BP and HR calculation. An ADC that is suitable for the BP sensor is proposed in the thesis. The ADC is designed in delta-sigma structure. The ADC is designed with SNDR of 75.63 dB, ENOB of 12.27 bit and 1k Hz signal bandwidth. It is fabricated in TSMC 0.18 μm process. The BP sensor system is combined with a 14bit ADC with 1k Hz conversion rate in the experiment. The experiment result is compared to the commercial monitor of OMRON. The BP error results in -0.72 ± 5.24 mmHg, which satisfies the grade A rule of IEEE standard.
摘要 I
ABSTRACT II
CONTENTS IV
LIST OF TABLES V
LIST OF FIGURES VI
CHAPTER 1 8
1.1 Background 8
1.2 Motivation 8
1.3 Organization of Thesis 10
CHAPTER 2 11
2.1 Photoplethysmographic (PPG) Signal 11
2.1.1 Principle of PPG Signal 11
2.1.2 PPG with banana shaped 12
2.1.3 Reflected Pulse Transit Time 14
2.2 Blood Pressure 14
2.2.1 Continous Waveform of Blood Pressure 14
2.2.2 Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) 16
2.2.3 Blood Pressure Equation 17
CHAPTER 3 20
3.1 Blood Pressure System for this thesis 20
3.2 Data Conversion for Blood Pressure Sensor 20
3.2.1 Conversion Rate 21
3.2.2 Resolution 23
3.3 Implementation of the ADC in the BP system 27
3.3.1 Commercial Modulator 27
3.3.2 Decimation Filter on FPGA 28
CHAPTER 4 31
4.1 Full Custom Delta-Sigma Modulator 31
4.2 Behavoir Model 31
4.3 Gate Level Design 32
4.3.1 Switch-Capacitor Integrator 32
4.3.2 Fully Differential Op-amp 34
4.3.3 Latch Comparator 37
4.3.4 Non-overlapping and Feedback loop 39
4.4 Simulation Result of Delta-Sigma Modulator 41
4.5 Chip Test 42
CHAPTER 5 45
5.1 Experiment Settings 45
5.2 Experiment Result and Analysis 46
5.3 Comparison of Performance 46
CHAPTER 6 51
6.1 Conclusions 51
6.2 Future Works 51
REFERENCES 52
REFERENCES
[1] Cardiovascular Diseases (CVDs), WHO, Geneva, Switzerland, 2015.
[2] S. Ahmad, M. Bolic, H. Dajani, V. Groza, I. Batkin, and S. Rajan, “Measurement of heart rate variability using an oscillometric blood pressure monitor,” IEEE Trans. Instrum. Meas., vol. 59, no. 10, pp. 2575–2590, Oct. 2010.
[3] P. Dupuis, and C. Eugene, “Combined detection of respiratory and cardiac rhythm disorders by high-resolution differential cuff pressure measurement,” IEEE Trans. Instrum. Meas., vol. 49, no. 3, pp. 498–502, Jun. 2000.
[4] T. Y. Tu, P. C. P. Chao , Y. P. Lee, and Y. H. Kao, “Optimal Design and Experimental Validation of A Novel No-Cusp Blood Pressure Sensor Based on A Novel Adaptive Finite Element Model,” Conference on Mechanical Vibration and Noise, August 17-20, 2014, Buffalo, New York, USA.
[5] G. Fortino, and V. Giampà, “PPG-based Methods for Non Invasive and Continuous Blood Pressure Measurement: an Overview and Development Issues in Body Sensor Networks,” 2010 IEEE International Workshop on MeMeA, pp. 10-13, 2011.
[6] D. B. McCombie, P. A. Shaltis, A. T. Reisner, and H. H. Sada, “Adaptive hydrostatic blood pressure calibration: Development of a wearable, autonomous pulse wave velocity blood pressure monitor,” Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pp. 370-373, 2007.
[7] S. Suzuki, and K. Oguri, “Cuffless Blood Pressure Estimation by Error-Correcting Output Coding Method Based on an Aggregation of AdaBoost with a Photoplethysmograph Sensor”, Annual International Conf. of the IEEE EMBC, pp. 6765-6768, 2009.
[8] G. J. Langewouters, A. Zwart, R. Busse, and KH Wessling, “Pressure-diameter relationships of segments of human finger arteries,” Clin Phys Physiol Meas, vol. 7, No. 1, pp. 43-56, 1986.
[9] A. Sahoo, P. Manimegalai, and K. Thanushkodi, “Wavelet Based Pulse Rate and Blood Pressure Estimation System from ECG and PPG Signals”, 2011 ICCCET, pp. 285-289, 2010.
[10] J. Allen, "Photoplethysmography and Its Application in Clinical Physiological Measurement," Physiological Measurement, vol. 28, no. 3, pp. 1-39, March 2007.
[11] R. Dresher, "Wearable Forehead Pulse Oximetry: Minimization of Motion and Pressure Artifacts," Master thesis, Biomedical Engineering, The Faculty of the Worcester Polytechnic Institute, 2006.
[12] J. Kraitl and H. Ewald, "Optical Non-invasive Methods for Characterization of The Human Health Status," presented at the 21st International Conference on Sensing Technology, Palmerston North, New Zealand, 2005.
[13] F. Peng, W. Wang, and H. Liu, “Development of a Reflective PPG Signal Sensor,” Biomedical Engineering and Informatics (BMEI), 2014 7th International Conference of IEEE, pp. 612-616. 08 January 2015.
[14] X. R. Ding, Y. T. Zhang, J. Liu, W. X. Dai, and H. K. Tsang, “Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio,” IEEE Transactions on Biomedical Engineering, vol. 63, no.5, pp. 964-972, 2016.
[15] D. J. Korteweg, “Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Röhren,” Annalen der Physik, vol. 241, no. 12, pp. 525-542, 1878.
[16] J. C. Bramwell and A. V. Hill, “The Velocity of the Pulse Wave in Man,” Proceedings of the Royal Society of London in Biological Character, vol. 93, no. 652, pp. 298-306, 1922.
[17] A. I. Moens, “Die Pulscurve,” German: Leiden, The Netherlands: E.J. Brill, 1878.
[18] A. J. Bank, R. F. Wilson, S. H. Kubo, J. E. Holte, T. J. Dresing, and H. Wang “Direct effects of smooth muscle relaxation and contraction on in vivo human brachial artery elastic properties,” Circulation Research, vol. 77, pp. 1008-1016, 1995.
[19] Daniel McDuf, Sarah Gontarek, Rosalind W. Picard, “Remote detection of photoplethysmographic systolic and diastolic peaks using a digital camera,” IEEE Trans. Biomed. Eng., vol. 61, no. 12, pp. 2948–2954, Dec. 2014.
[20] IEEE Standard for Wearable Cuffless Blood Pressure Measuring Devices, IEEE standard P1708/D04, 2014-08-26.
[21] 陳文瑜(2019)。 應用於磁性尺之高精度細分割編碼器電路設計與實現。[ Design and Implementation of a High Accuracy Interpolation Encoder IC for Magnetic Sensor ],國立交通大學光電系統研究所,碩士論文,新竹市。
[22] F. Peng, W. Wang, and H. Liu, “Development of a Reflective PPG Signal Sensor,” Biomedical Engineering and Informatics (BMEI), 2014 7th International Conference of IEEE, pp. 612-616. 08 January 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔