跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/27 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭景鴻
研究生(外文):Cheng, Ching-Hung
論文名稱:整合機器人運動控制迴路與高速攝影機陣列之視覺伺服系統實現
論文名稱(外文):Realization of Visual Servo Systems with Integrated Robot Motion Control Loop and High-Speed Camera Arrays
指導教授:蕭得聖
指導教授(外文):Hsiao, Te-sheng
口試委員:宋開泰楊谷洋蕭得聖
口試委員(外文):Song, Kai-TaiYoung, Kuu-YoungHsiao, Te-sheng
口試日期:2019-01-04
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:80
中文關鍵詞:視覺伺服高速攝影機六軸機械手臂即時作業
外文關鍵詞:Visual servoHigh-speed camera6DOF robot armReal-time
相關次數:
  • 被引用被引用:4
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:2
  本研究為整合機械手臂與高速攝影機陣列之視覺伺服系統。而我們採用基於位置之視覺伺服以及eye-to-hand形式進行。與一般視覺伺服最大不同的地方在於本研究所使用的視覺系統為多個工業用攝影機組成之高速攝影機陣列。
  本研究之視覺伺服所使用之機器人系統為國內上銀科技製造之RA605六軸工業用機械手臂。視覺系統則是使用本實驗室所設計之高速攝影機陣列[1],攝影機陣列由四組共八台攝影機組成,兩隻單眼相機組成一組雙眼相機。每一組雙眼相機的取樣速度為250 fps,並以交錯方式使相機拍攝,則此情況下四組等效的取樣速度為1000 fps,與機械手臂運動控制的取樣時間相同,以利機械手臂控制得更準確。
  為了使機械手臂追蹤物體時的軌跡較為平順,因此本研究將對追蹤物體做預測,亦即預測物體未來時間點的位置,接著我們在工作空間中以等邊梯形的速度曲線規劃出一條機械手臂末端點與預測物體的位置之間的直線路徑,使機械手臂末端點往預測物體位置方向前進並指向物體。
  最後我們設計兩個實驗來驗證高速攝影機應用在視覺伺服系統的效果。分別為物體以規律的軌跡運動的情況下使手臂追蹤物體以及物體以非規律軌跡運動的情況下使手臂追蹤物體,且透過改變相機取樣速度觀察實驗結果之影響,藉此以證明使用高速相機的成效。
  This study aims at establishing a visual servo system that integrates the robotic motion control system and a high-speed camera array. We use position-based visual servoing and the eye-to-hand configuration. The most salient feature of the proposed visual servo system is the use of a high-speed camera array that consists of multiple industrial cameras.
  The robot used in the visual servo system of this study is the RA605 six-axis industrial robot arm manufactured by HIWIN Technologies Crop. The vision system adopts the high-speed camera array [1] designed by our laboratory that consists of eight cameras, and every two cameras form a binocular pair. The frame rate of each binocular pair is 250 fps. By triggering each pair in an interleaving way, the equivalent frame rate of the camera array is 1000 fps, which is as high as the sampling rate of the robotic motion control system.
In order to generate a smooth trajectory when the robot arm is tracking a target, this study predicts the future position of the target. Then we command the end-effector of the robot to move along a straight line toward the predicted position with the desired orientation and follow an isosceles trapezoidal velocity profile we planned on-line.
Finally, we design two experiments to verify the advantages of applying high-speed camera array in visual servo systems. One experiment is to track a target which moves in a regular trajectory in a plane, and the other is to track an target which moves in an arbitrary trajectory in the 3D space. We also change the frame rates of the cameras to observe the influence of experimental results, and verify the advantages of using the high-speed camera array.
摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章、緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究貢獻 3
1.4 論文架構 3
第二章、相關研究 5
2.1 視覺伺服(Visual Servoing) 5
2.1.1 基於影像的視覺伺服(IBVS) 5
2.1.2 基於位置的視覺伺服(PBVS) 7
第三章、機械手臂運動控制 9
3.1 D-H model 9
3.2 運動學 10
3.2.1 正運動學 11
3.2.2 逆運動學 12
3.3 Jacobian Matrix 14
3.4 控制器架構 17
3.5 系統鑑別與控制器效能測試 20
第四章、實驗平台硬體架構 25
4.1 相機設備 25
4.2 機械手臂與其相關之設備 27
4.3 機械手臂與影像系統之整合 28
第五章、軟體設計 32
5.1 相機陣列系統 32
5.1.1 相機校正 32
5.1.2 影像處理 34
5.1.3 立體視覺 37
5.2 物體軌跡預測 37
5.3 機械手臂路徑規劃 41
第六章、實驗結果與討論 47
6.1 相機量測精度 48
6.2 影像取樣速率及預測時間長短之測試 49
6.2.1 不同預測時間對於相機相同取樣速度之影響 49
6.2.2 相機不同取樣速度對於預測相同時間之影響 55
6.3 視覺伺服—圓形軌跡追蹤 57
6.3.1 圓盤等速 57
6.3.2 圓盤變速 61
6.4 視覺伺服實驗—任意路徑追蹤 72
6.4.1 不同預測時間對任意路徑預測值之影響 72
6.4.2 手臂追蹤物體之實驗 74
第七章、結論與未來展望 77
7.1 結論 77
7.2 未來展望 78
參考文獻 79
[1] 王嘉維, ”以相機陣列實現高速及時物體追蹤及飛行軌跡估測”, 碩士論文, 電控工程研究所, 國立交通大學, 新竹, 民國105年
[2] F. Chaumette and S. Hutchinson, "Visual servo control. I. Basic approaches," in IEEE Robotics & Automation Magazine, vol. 13, no. 4, pp. 82-90, Dec. 2006.
[3] P. I. Corke and S. A. Hutchinson, "Real-time vision, tracking and control," Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA, USA, 2000, pp. 622-629 vol.1.
[4] S. Hutchinson, G. D. Hager and P. I. Corke, "A tutorial on visual servo control," in IEEE Transactions on Robotics and Automation, vol. 12, no. 5, pp. 651-670, Oct. 1996.
[5] Fioravanti, D., Allotta, B. and Rindi, A., “Image based visual servoing for robot positioning tasks,” Meccanica, 43, 291-305 (2008).
[6] K. Hashimoto, T. Kimoto, T. Ebine and H. Kimura, "Manipulator control with image-based visual servo," Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 1991, pp. 2267-2271 vol.3.
[7] A. Ghasemi and W. Xie, "Decoupled image-based visual servoing for robotic manufacturing systems using gain scheduled switch control," 2017 International Conference on Advanced Mechatronic Systems (ICAMechS), Xiamen, 2017, pp. 94-99.
[8] Z. Xungao, X. Min, G. Jiansheng, Z. Xunyu and P. Xiafu, "Robot manipulation using image-based visual servoing control with robust state estimation," 2018 Chinese Control And Decision Conference (CCDC), Shenyang, 2018, pp. 445-449.
[9] N. Marturi, Vision and visual servoing for nanomanipulation and nanocharacteriz-ation in scanning electron microscope, Micro and nanotechnologies/Microelectronics. Universit´e de Franche-Comt´e, 2013, English.
[10] N. R. Gans, A. P. Dani and W. E. Dixon, "Visual servoing to an arbitrary pose with respect to an object given a single known length," 2008 American Control Conference, Seattle, WA, 2008, pp. 1261-1267.
[11] W. J. Wilson, C. C. Williams Hulls and G. S. Bell, "Relative end-effector control using Cartesian position based visual servoing," in IEEE Transactions on Robotics and Automation, vol. 12, no. 5, pp. 684-696, Oct. 1996.
[12] V. Lippiello, B. Siciliano and L. Villani, "Position-Based Visual Servoing in Industrial Multirobot Cells Using a Hybrid Camera Configuration," in IEEE Transactions on Robotics, vol. 23, no. 1, pp. 73-86, Feb. 2007.
[13] F. Dai and K. Wang, "Visual Servoing based pickup of moving objects with a kinematically controlled manipulator," 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, 2016, pp. 550-555.
[14] R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control: MIT Press, 1982.
[15] 黃柏浩, ”疊代學習控制應用於六軸機械手臂之軌跡追蹤”, 碩士論文, 電控工程研究所, 國立交通大學, 新竹, 民國105年
[16] K. Ohnishi, "A new servo method in mechatronics," Trans. Japanese Soc. Elect. Eng, vol. 107-D, pp. 83–86, 1987.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top