(44.192.112.123) 您好!臺灣時間:2021/03/04 06:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐翊維
論文名稱:應用修正UTAUT2探討臺灣消費者對於智慧家庭設備之採用意圖
論文名稱(外文):Using Adapted UTAUT2 Model to Explore Consumers’ Adoption Intention of Smart Home Appliances in Taiwan
指導教授:曾芳代曾芳代引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:經營管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:66
中文關鍵詞:智慧家庭整合性科技接受使用模式延伸性整合科技接受使用模式物聯網
外文關鍵詞:Smart homeUTAUTUTAUT2Internet of things
相關次數:
  • 被引用被引用:1
  • 點閱點閱:86
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著科技的高速發展,諸多的科技產品相繼推出,而「智慧家庭」(Smart Home)便在這股潮流下,透過許多的電影及影集的放送,使觀眾對於未來家庭的模樣有了更多地想像。而智慧家庭也透過相關技術的支援如IoT物聯網、人工智慧、5G及邊緣運算等,逐漸建構成更為完整的智慧家庭生態系統,而本研究便是建立於此背景動機,欲了解臺灣之消費者在這股浪潮下,對於智慧家庭的採用意圖及想法行為,並透過修正的整合性科技接受使用模式(UTAUT)及延伸性整合科技接受使用模式(UTAUT2)進行探討。
本研究針對有使用過相關智慧家庭產品之消費者為研究對象,共收回有效問卷530份。採用SAS 9.4統計軟體進行PROC GLM之迴歸分析。研究結果發現:績效期望、努力期望、有利條件、享樂動機、價格價值以及使用習慣等六個構面對於消費者智慧家庭之使用意圖皆有顯著正向影響,而社會影響對於智慧家庭之使用意圖則無顯著關係。
在調節變數方面,年齡對於使用智慧家庭設備之努力期望與使用意圖間以年紀較輕之消費者的調節效果為高;社會影響與使用意圖間以中年世代之調節效果較強;享樂動機與使用意圖方面則以壯、老年世代有較強的調節效果;在價格價值對於使用意圖間之關係,以中世代之調節效果最為顯著。但年齡在績效期望及使用習慣對於與使用意圖間之關係皆不具有調節效果。而性別對於採用智慧家庭之意圖間之關係,以女性在績效期望及社會影響上對於使用意圖皆有正面且顯著之影響,另外,以男性在享樂動機對於使用意圖方面有正向且顯著之影響。
In recent years, with the rapid development of science and technology, many technological products have been launched one after another. Under the trend, ‘Smart Home’ have made many audiences imagine more about future families through the release of many movies and albums. Smart home is gradually developed by related techniques, such as IoT (Internet of Things), AI and 5G. Thus, the purpose of this research is based on the background to investigate the consumers’ intention and behavior on adopting the smart home appliances in Taiwan. And we used adapted UTAUT and UTAUT2 to explore it.
We focused on consumers who have used relevant smart home appliances. We took our survey online and totally collected 530 valid questionnaires for the final analysis. We used SAS 9.4 statistical software for regression analysis. The study found that the six variables i.e. performance expectation, effort expectation, facilitating conditions, hedonic motivation, price value and habits had a significant positive effect on consumers’ intention to adopt smart home appliances. But the social influence of the model has no significant relationship with the intention of using smart home appliances.
In addition, the performance expectation and social influence have a more significant positive impact on female respondents than male, whereas hedonic motivation has a stronger effect on perception of male respondents. On the other hand, as the moderator of age, moderated the variables i.e. effort expectation, social influence, price value, facilitating conditions and hedonic motivation’s relationships between the behavioral intention in adopting smart home appliances.
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 1
1.3 研究流程 2
第二章 文獻回顧 3
2.1 智慧家庭 3
2.1.1 智慧家庭的定義 3
2.1.2 智慧家庭設備發展現況 3
2.1.3 相關重點技術支援 9
2.2 接受使用行為理論及相關文獻回顧 12
2.2.1 理性行為理論(THEORY OF REASONED ACTION, TRA) 12
2.2.2 計畫行為理論(THEORY OF PLANNED BEHAVIOR, TPB) 13
2.2.3 科技接受模型(TECHNOLOGY ACCEPTANCE MODEL, TAM) 14
2.2.4 整合性科技接受使用模式(THE UNIFIED OF ACCEPTANCE AND USE OF THCHNOLOGY, UTAUT) 15
2.2.5 延伸性整合科技接受使用模式(EXTENDING THE UNIFIED THEORY OF ACCEPTANCE AND USE OF TECHNOLOGY, UTAUT2) 19
第三章 研究方法 22
3.1 研究架構 22
3.2 研究假設 23
3.3 研究變數之操作型定義 30
3.4 研究設計 34
3.4.1 研究對象與範圍 34
3.4.2 問卷設計 35
3.4.3 問卷前測 35
3.5資料蒐集 36
3.5.1界定母體與抽樣對象 36
3.5.2抽樣過程 36
3.6 資料之分析方法 37
第四章 研究結果 39
4.1 問卷回收狀況及資料結構分析 39
4.2 敘述性統計分析 41
4.3 量表配適度評估 44
4.4 信度檢驗分析 45
4.5 效度檢驗分析 46
4.6 假設檢定結果 48
第五章 結論與建議 53
5.1 研究結論 53
5.2 管理意涵 57
5.3 研究限制與後續研究之相關建議 59
參考文獻 60
1. Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., & Williams, M. D. (2016). “Consumer Adoption of Mobile Banking in Jordan: Examining the Role of Usefulness, Ease of Use, Perceived Risk and Self-Efficacy.” Journal of Enterprise Information Management, Vol.29 No.1, pp.118-139.
2. Ajzen, I., & Fishbein, M. (1980). “Understanding Attitudes and Predicting Social Behaviour.” Englewood Cliffs.
3. Ajzen, I., & Fishbein, M. (1975). “A Bayesian Analysis of Attribution Processes.” Psychological Bulletin, Vol.82 no.2, pp.261.
4. Ajzen, I. (1991). “The Theory of Planned Behavior.” Organizational behavior and human decision processes, Vol.50 No.2, pp.179-211.
5. Baker, J., Grewal, D., & Parasuraman, A. (1994). “The Influence of Store Environment on Quality Inferences and Store Image.” Journal of the academy of marketing science, Vol.22 No,4, pp.328-339.
6. Bakan, D. (1966). “The Duality of Human Existence: An Essay on Psychology and Religion.”
7. Bem, D. J., & Allen, A. (1974). “On Predicting Some of the People Some of the Time: The Search for Cross-Situational Consistencies in Behavior.” Psychological review, Vol.81 No.6, pp.506.
8. Bentler, P. M., & Bonett, D. G. (1980). “Significance Tests and Goodness of Fit in the Analysis of Covariance Structures.” Psychological bulletin, Vol.88 No.3, pp.588.
9. Bozionelos, N. (1996). “Psychology of Computer Use: XXXIX. Prevalence of Computer Anxiety in British Managers and Professionals.” Psychological Reports, Vol.78 No.3, pp.995-1002.
10. Brown, S. A., & Venkatesh, V. (2005). “Model of Adoption of Technology in Households: A Baseline Model Test and Extension Incorporating Household Life Cycle.” MIS quarterly, Vol.29 No.3.
11. Broos, A. (2005). “Gender and Information and Communication Technologies (ICT) Anxiety: Male Self-Assurance and Female Hesitation.” Cyber Psychology & Behavior, Vol.8 No.1, pp.21-31.
12. Chau, P. Y., & Hui, K. L. (1998). “Identifying Early Adopters of New IT Products: A Case of Windows 95.” Information & management, Vol.33 No.5, pp.225-230.
13. Compeau, D. R., & Higgins, C. A. (1995). “Computer Self-Efficacy: Development of a Measure and Initial Test.” MIS quarterly, Vol.19 No.2, pp.189-211.
14. Compeau, D., Higgins, C. A., & Huff, S. (1999). “Social Cognitive Theory and Individual Reactions to Computing Technology: A Longitudinal Study.” MIS quarterly, Vol.23 No.2, pp.145-158.
15. Cronin Jr, J. J., Brady, M. K., & Hult, G. T. M. (2000). “Assessing the Effects of Quality, Value, and Customer Satisfaction on Consumer Behavioral Intentions in Service Environments.” Journal of retailing, Vol.76 No.2, pp.193-218.
16. Davis, F. D. (1986). “A Technology Acceptance Model for Empirically Testing New End-User Information Systems.” Cambridge, MA. pp.233-250.
17. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). “User Acceptance of Computer Technology: A Comparison of Two Theoretical Models.” Management science, Vol.35 No.8, pp.982-1003.
18. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). “Extrinsic and Intrinsic Motivation to Use Computers in the Workplace 1.” Journal of applied social psychology, Vol.22 No.14, pp.1111-1132.
19. Deaux, K., & Lewis, L. L. (1984). “Structure of Gender Stereotypes: Interrelationships Among Components and Gender Label.” Journal of personality and Social Psychology, Vol.46 No.5, pp.991.
20. Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). “Effects of Price, Brand, and Store Information on Buyers’ Product Evaluations.” Journal of marketing research, Vol.28 No.3, pp.307-319.
21. Dowling, G. R., & Staelin, R. (1994). “A Model of Perceived Risk and Intended Risk-Handling Activity.” Journal of consumer research, Vol.21 No.1, pp.119-134.
22. Doll, W. J., Xia, W., & Torkzadeh, G. (1994). “A Confirmatory Factor Analysis of the End-User Computing Satisfaction Instrument.” MIS quarterly, Vol.18 No.4, pp.453-461.
23. Farina, A. (1982). “The Stigma of Mental Disorders.” In the eye of the beholder, pp.305-363.
24. Ghalandari, K. (2012). “The Effect of Performance Expectancy, Effort Expectancy, Social Influence and Facilitating Conditions on Acceptance of E-Banking Services in Iran: The Moderating Role of Age and Gender.” Middle-East Journal of Scientific Research, Vol.12 No.6, pp.801-807.
25. Gupta, B., Dasgupta S., & Gupta, A. (2008). “Adoption of ICT in A Government Organization in A Developing Country: An Empirical Study.” Journal of Strategic Information Systems, Vol.17 No.2, pp.140-154.
26. Hall, D. T., & Mansfield, R. (1975). “Relationships of Age and Seniority With Career Variables of Engineers and Scientists.” Journal of Applied Psychology, Vol.60 No.2, pp.201.
27. Hasher, L., & Zacks, R. T. (1979). “Automatic and Effortful Processes in Memory.” Journal of experimental psychology: General, Vol.108 No.3, pp.356.
28. Holbrook, M. B., & Hirschman, E. C. (1982). “The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun.” Journal of consumer research, Vol.9 No.2, pp.132-140.
29. Hu, L. T., & Bentler, P. M. (1999). “Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives.” Structural equation modeling: a multidisciplinary journal, Vol.6 No.1, pp.1-55.
30. Jarvenpaa, S. L., & Todd, P. A. (1996). “Consumer Reactions to Electronic Shopping on the World Wide Web.” International Journal of electronic commerce, Vol.1 No.2, pp.59-88.
31. Jennings, J. M., & Jacoby, L. L. (1993). “Automatic Versus Intentional Uses of Memory: Aging, Attention, and Control.” Psychology and aging, Vol.8 No.2, pp.283.
32. Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). “Information Technology Adoption Across Time: A Cross-Sectional Comparison of Pre-Adoption and Post-Adoption Beliefs.” MIS quarterly, Vol.23 No.2, pp.183-213.
33. Kite, M. E., & Deaux, K. (1987). “Gender Belief Systems: Homosexuality and the Implicit Inversion Theory.” Psychology of Women Quarterly, Vol.11 No.1, pp.83-96.
34. Kuo, Y. F., & Yen, S. N. (2009). “Towards an Understanding of the Behavioral Intention to use 3G Mobile Value-Added Services.” Computers in Human Behavior, Vol.25 No.1, pp.103-110.
35. Lankton, N. K., Wilson, E. V., & Mao, E. (2010). “Antecedents and Determinants of Information Technology Habit.” Information & Management, Vol.47 No.5-6, pp.300-307.
36. Lee, H. J., Jeong Cho, H., Xu, W., & Fairhurst, A. (2010). “The Influence of Consumer Traits and Demographics on Intention to Use Retail Self-Service Checkouts.” Marketing Intelligence & Planning, Vol.28 No.1, pp.46-58.
37. Leong, L. Y., Hew, T. S., Tan, G. W. H., & Ooi, K. B. (2013). “Predicting the Determinants of The NFC-Enabled Mobile Credit Card Acceptance: A Neural Networks Approach.” Expert Systems with Applications, Vol.40 No.14, pp.5604-5620.
38. Lian, J. W., Yen, D. C., & Wang, Y. T. (2014). “An Exploratory Study to Understand the Critical Factors Affecting the Decision to Adopt Cloud Computing in Taiwan Hospital.” International Journal of Information Management, Vol.34 No.1, pp.28-36.
39. Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). “How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance.” MIS quarterly, Vol.31 No.4. pp.705-738.
40. Luarn, P., & Lin, H. H. (2005). “Toward an Understanding of the Behavioral Intention to Use Mobile Banking.” Computers in human behavior, Vol.21 No.6, pp.873-891.
41. Luo, X., Li, H., Zhang, J., & Shim, J. P. (2010). “Examining Multi-Dimensional Trust and Multi-Faceted Risk in Initial Acceptance of Emerging Technologies: An Empirical Study of Mobile Banking Services.” Decision support systems, Vol.49 No.2, pp.222-234.
42. Lustig, C., Konkel, A., & Jacoby, L. L. (2004). “Which Route to Recovery? Controlled Retrieval and Accessibility Bias in Retroactive Interference.” Psychological Science, Vol.15 No.11, pp.729-735.
43. MacCallum, R. C., & Hong, S. (1997). “Power Analysis in Covariance Structure Modeling Using GFI and AGFI.” Multivariate Behavioral Research, Vol.32 No.2, pp.193-210.
44. Martins, C., Oliveira, T., & Popovič, A. (2014). “Understanding the Internet Banking Adoption: A Unified Theory of Acceptance and Use of Technology and Perceived Risk Application.” International Journal of Information Management, Vol.34 No.1, pp.1-13.
45. McDonald, R. P., & Ho, M. H. R. (2002). “Principles and Practice in Reporting Structural Equation Analyses.” Psychological methods, Vol.7 No.1, pp.64.
46. Meyers-Levy, J., & Tybout, A. M. (1989). “Schema Congruity as a Basis for Product Evaluation.” Journal of consumer research, Vol.16 No.1, pp.39-54.
47. Midgley, D. F., & Dowling, G. R. (1978). “Innovativeness: The Concept and Its Measurement.” Journal of consumer research, Vol.4 No.4, pp.229-242.
48. Minton, H. L., & Schneider, F. W. (1980). “Differential Psychology Waveland Press.” Prospect Heights. IL.
49. Miller, P. M., & Ingham, J. G. (1976). “Friends, Confidants and Symptoms.” Social Psychiatry, Vol.11 No.2, pp.51-58.
50. Moore, G. C., & Benbasat, I. (1991). “Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation.” Information systems research, Vol.2 No.3, pp.192-222.
51. Morosan, C., & DeFranco, A. (2016). “It's About Time: Revisiting UTAUT2 to Examine Consumers’ Intentions to use NFC Mobile Payments in Hotels.” International Journal of Hospitality Management, Vol.53, pp.17-29.
52. Oliveira, D. M., & Raeder, J. (2014). “Impact Angle Control of Interplanetary Shock Geoeffectiveness.” Journal of Geophysical Research: Space Physics, Vol.119 No.10, pp.8188-8201.
53. Orbell, S., Blair, C., Sherlock, K., & Conner, M. (2001). “The Theory of Planned Behavior and Ecstasy Use: Roles for Habit and Perceived Control Over Taking Versus Obtaining Substances.” Journal of Applied Social Psychology, Vol.31 No.1, pp.31-47.
54. Pavlou, P. A., & Fygenson, M. (2006). “Understanding and Predicting Electronic Commerce Adoption: An Extension of the Theory of Planned Behavior.” MIS quarterly, Vol.31 No.1, pp.115-143.
55. Porter, L. W. (1963). “Job Attitudes in Management: II. Perceived Importance of Needs as a Function of Job Level.” Journal of Applied Psychology, Vol.47 No.2, pp.141.
56. Pynoo, B., Devolder, P., Tondeur, J., van Braak, J., Duyck, W., & Duyck, P. (2011). “Predicting Secondary School Teachers' Acceptance and Use of a Digital Learning Environment: A Cross-Sectional Study.” Computers in Human Behavior, Vol.27 No.1, pp.568-575.
57. Riffai, M. M. M. A., Grant, K., & Edgar, D. (2012). “Big TAM in Oman: Exploring the Promise of On-Line Banking, Its Adoption by Customers and the Challenges of Banking in Oman.” International journal of information management, Vol.32 No.3, pp.239-250.
58. Riquelme, H. E., & Rios, R. E. (2010). “The Moderating Effect of Gender in the Adoption of Mobile Banking.” International Journal of bank marketing, Vol.28 No.5, pp.328-341.
59. Rhodes, S. R. (1983). “Age-Related Differences in Work Attitudes and Behavior: A Review and Conceptual Analysis.” Psychological bulletin, Vol.93 No.2, pp.328.
60. San, A. N. C., Yee, C. J., Moorthy, K., & Lee, A. F. T. (2017). “Intention To Use M-Government Services: Age, Gender And Education Really Matter?.” International Journal of eBusiness and eGovernment Studies, Vol.9 No.2, pp.1-31.
61. Sareen, M., & Jain, A. (2014). “The Role of Social Influence and Consumers' Effort Expectancy on Online Shopping: An Empirical Study of India.” International Journal of Management Research and business strategy, Vol.3 No.1, pp.138-158.
62. Sykes, T. A. (2015). “Support Structures and Their Impacts: A Longitudinal Field Study of an Enterprise System Implementation.” MIS Quarterly, Vol.39 No.2, pp.437-495.
63. Sykes, T. A., Venkatesh, V., & Johnson, J. L. (2014). “Enterprise System Implementation and Employee Job Performance: Understanding the Role of Advice Networks.” MIS Quarterly, Vol.38 No.1, pp.51-72.
64. Shuhaiber, A., & Mashal, I. (2019). “Understanding Users’ Acceptance of Smart Homes.” Technology in Society, Vol.1 No.1, pp.1-9.
65. Taylor, S., & Todd, P. A. (1995). “Understanding Information Technology Usage: A Test of Competing Models.” Information systems research, Vol.6 No.2, pp.144-176.
66. Taylor, J. W. (1974). “The Role of Risk in Consumer Behavior: a Comprehensive and Operational Theory of Risk Taking in Consumer Behavior.” Journal of marketing, Vol.38 No.2, pp.54-60.
67. Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). “Personal Computing: Toward a Conceptual Model of Utilization.” MIS quarterly, Vol.15 No.1, PP.125-143.
68. Thong J. Y. L., Hong, S. J., and Tam, K. Y. 2006. “The Effects of Post-Adoption Beliefs on the Expectation–Confirmation Model for Information Technology Continuance,” International Journal of Human-Computer Studies, Vol.64 No.9, pp.799-810.
69. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). “User Acceptance of Information Technology: Toward a Unified View.” MIS quarterly, Vol.27 No.3, pp.425-478.
70. Venkatesh, V., & Morris, M. G. (2000). “Why Don't Men Ever Stop to Ask for Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior.” MIS quarterly, Vol.24 No.1, pp.115-139.
71. Venkatesh, V., & Speier, C. (1999). “Computer Technology Training in the Workplace: A Longitudinal Investigation of the Effect of Mood.” Organizational behavior and human decision processes, Vol.79 No.1, pp.1-28.
72. Venkatesh, V., & Davis, F. D. (2000). “A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies.” Management science, Vol.46 No.2, pp.186-204.
73. Venkatesh, V., Zhang, X., & Sykes, T. A. (2011). “Doctors Do Too Little Technology: A Longitudinal Field Study of an Electronic Healthcare System Implementation.” Information Systems Research, Vol.22 No.3, pp.523 546.
74. Venkatesh, V., Thong, J. Y., & Xu, X. (2012). “Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology.” MIS quarterly, Vol.36 No.1, pp.157-178.
75. Venkatesh, V., Thong, J. Y., & Xu, X. (2016). “Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead.” Journal of the Association for Information Systems, Vol.17 No.5, pp.328-376.
76. Wang, Y. S., Lin, H. H., & Luarn, P. (2006). “Predicting Consumer Intention to Use Mobile Service.” Information systems journal, Vol.16 No.2, pp.157-179.
77. Williams, M., Rana, N., Roderick, S., & Clement, M. (2016). “Gender, Age, and Frequency of Internet Use as Moderators of Citizens’ Adoption of Electronic Government.” Twenty-second Americas Conference on Information Systems, San Diego.
78. Yaprakli, S., Kalbakhani, E., & Rasouli, R. (2013). “An Application of UTAUT Model for Online Shopping Acceptance in Iran.” Reef Resour Assess Manag Tech Pap, Vol.38 No.5, pp.237-244.
79. Zhao, Y., Ni, Q., & Zhou, R. (2018). “What Factors Influence the Mobile Health Service Adoption? A Meta-Analysis and the Moderating Role of Age.” International Journal of Information Management, Vol.43, pp.342-350.
80. Zhou, T., Lu, Y. B., & Wang, B. (2010). “Integrating TTF and UTAUT to Explain Mobile Banking User Adoption.” Computers in Human Behavior, Vol.26 No.4, Vol.760-767.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔