(3.236.228.250) 您好!臺灣時間:2021/04/22 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林枋萭
研究生(外文):Ling, Fang-Yu
論文名稱:探討扇出型面板級封裝結構離型取下之機械行為
論文名稱(外文):Investigating Mechanical Behaviors of Fan-Out Panel Level Packaging Structures during De-bonding
指導教授:蔡佳霖蔡佳霖引用關係
指導教授(外文):Tsai, Jia-Lin
口試委員:楊鎮在蔡佳宏
口試日期:2018-11-01
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:120
中文關鍵詞:扇出型面板級封裝離型取下熱翹曲主模型與子模型應變能釋放率脫層行為有限元素法
外文關鍵詞:Fan-Out Panel Level PackagingFOPLPDe-bondingthermal warpageGlobal Model Method and Local Model Methodtotal energy release ratedelaminationfinite element
相關次數:
  • 被引用被引用:1
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究主要利用有限元素法,模擬扇出型面板級封裝(Fan-Out Panel Level Packaging, FOPLP)於製程中之機械行為,研究中探討製程包含封裝結構熱循環(thermal cycling process)製程與離型取下(de-bonding process),藉由對FOPLP封裝結構進行分析與探討,進而避免結構在製程中產生脫層而損壞或失效。
  研究內容針對FOPLP封裝結構建立二維模型,並探討其機械式離型取下(Mechanical loading induced de-bonding)過程之行為,利用主模型與子模型 (Global Model Method and Local Model Method)模擬技術,來探討FOPLP封裝結構在製程中所受之應力分佈,藉由調整結構之幾何與材料參數,協助FOPLP之製程開發,並討論製程熱效應造成之內應力對離型取下之影響。
  此外,進一步將熱循環製程考慮於結構中,以探討熱翹曲與離型界面脫層行為,因結構熱翹曲為三維問題,透過雙材料破壞力學理論,計算脫層時微小缺陷之總應變能釋放率。利用熱循環製程後之雷射取下(Laser assistance de-bonding)模擬技術,修正結構中環氧模壓樹脂之模型,使封裝結構之製程模擬更連貫且完整。
  最後將模擬技術應用於TFT-FOPLP面板級封裝結構中,其結構為FOPLP封裝結構之應用延伸,藉由將薄膜電晶體(Thin-Film Transistor, TFT)製於晶片外,藉由主模型與子模型模擬技術,建立多階子模型,討論細微尺寸結構於熱循環製程中所造成之應力與應變,並用於分析製程中導電通道之電性行為。
This research aims to investigate the mechanical behaviors of a Fan-Out Panel Level Packaging (FOPLP) display during the fabrication process using finite element analysis. The fabrication process includes the thermal cycling process and the de-bonding process of FOPLP display. By understanding the stress and strain distribution with FOPLP display, the degree of damage or failure for the FOPLP display during fabrication process can be reduced.
In order to understand the mechanical de-bonding process, a simplified FOPLP two-dimensional finite element model was established. By adopting the technique of global model and local model simulation, the stress states within FOPLP display can be calculated. In addition, the thermal stress generated was also taken into account in the simulation. By adjusting the geometry and material properties, the stress state with the FOPLP can be reduced, which is helpful in the development of FOPLP.
In addition, the warpage deduced during the thermal cycling process together with the delamination was investigated in the study. Since the thermal warpage is a three-dimensional problem, a three-dimensional finite element model was introduced and the total energy release rate of the defect at the onset of delamination was calculated by using bi-material fracture mechanics. Moreover, the consideration of laser assistance de-bonding technology after the thermal cycle process and the modification of mechanical model of Epoxy Molding Compound (EMC) make the simulation results more complete.
The simulation technique established in previous section was extended to investigate the mechanical behaviors of FOPLP with Thin-Film Transistor (TFT) embedded underneath the Die. The TFT-FOPLP structure was examined through global-local simulation, and the stress and strain states of TFT after thermal cycling were calculated. The information will be employed to understand the electrical behavior of channel during the fabrication process.
目錄
摘 要 i
Abstract iii
致謝 v
目錄 vii
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1研究動機與文獻回顧 1
1.2研究目標與方法 3
第二章 FOPLP封裝結構機械式取下模擬分析 6
2.1二維總應變能釋放率計算 7
2.2主模型與子模型模擬技術 10
2.2.1 等效主模型之建立 10
2.2.2 探討線路重佈技術對機械式取下之影響 14
2.2.3 單銅柱子模型之建立 15
2.2.4 裂紋成長位置分析 16
2.2.5 參數分析與製程導入 18
2.3製程熱效應對機械式取下之影響 21
第三章 簡化封裝結構熱循環製程模擬 24
3.1三維總應變能釋放率計算 25
3.2簡化封裝結構製程介紹 27
3.3簡化封裝結構翹曲模擬 29
3.4簡化封裝結構脫層分析 30
3.4.1脫層界面應力分析 31
3.4.2封裝結構脫層模擬 34
3.5製程導入與結果討論 35
3.5.1晶片覆蓋率 36
3.5.2晶片與環氧模壓樹脂幾何 37
3.5.3基板種類 39
3.6簡化封裝結構雷射取下 41
3.6.1環氧模壓樹脂化學收縮模擬 42
3.6.2雷射取下翹曲模擬 44
第四章 TFT-FOPLP封裝結構製程模擬 46
4.1薄膜電晶體原理 47
4.2 TFT-FOPLP封裝結構幾何 48
4.3 TFT-FOPLP封裝結構製程介紹 50
4.4主模型與子模型模擬技術 51
4.4.1等效主模型之建立 52
4.4.2一階子模型之建立 55
4.4.3二階子模型之建立 56
4.5薄膜電晶體元件之應力應變分析 57
第五章 結論與未來展望 58
5.1結論 58
5.2未來展望 60
參考文獻 61
附表 65
附圖 79
[1] C. T. Sun and Z. Jin, "Fracture Mechanics, vol. 10," ed: Academic Press, 2012.
[2] G. R. Irwin, "Analysis of stresses and strains near the end of a crack traversing a plate," 1997.
[3] E. F. Rybicki and M. F. Kanninen, "A finite element calculation of stress intensity factors by a modified crack closure integral," Engineering fracture mechanics, vol. 9, pp. 931-938, 1977.
[4] K. Shivakumar, P. Tan, and J. Newman, "A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies," International Journal of Fracture, vol. 36, pp. R43-R50, 1988.
[5] H. Okada, M. Higashi, M. Kikuchi, Y. Fukui, and N. Kumazawa, "Three dimensional virtual crack closure-integral method (VCCM) with skewed and non-symmetric mesh arrangement at the crack front," Engineering fracture mechanics, vol. 72, pp. 1717-1737, 2005.
[6] S. A. Smith and I. S. Raju, "Evaluation of stress-intensity factors using general finite-element models," in Fatigue and Fracture Mechanics: 29th Volume, ed: ASTM International, 1999.
[7] M. Williams, "The stresses around a fault or crack in dissimilar media," Bulletin of the seismological society of America, vol. 49, pp. 199-204, 1959.
[8] C. T. Sun and W. Qian, "The use of finite extension strain energy release rates in fracture of interfacial cracks," International Journal of Solids and Structures, vol. 34, pp. 2595-2609, 1997.
[9] J. Cho, M. Joshi, and C. T. Sun, "Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles," Composites Science and Technology, vol. 66, pp. 1941-1952, 2006.
[10] T. Braun, S. Voges, M. Töpper, M. Wilke, M. Wöhrmann, U. Maaß, M. Huhn, K.-F. Becker, S. Raatz, and J.-U. Kim, "Material and process trends for moving from FOWLP to FOPLP," in Electronics Packaging and Technology Conference (EPTC), 2015 IEEE 17th, 2015, pp. 1-6.
[11] T. Ikeda and C. T. Sun, "Stress intensity factor analysis for an interface crack between dissimilar isotropic materials under thermal stress," International Journal of Fracture, vol. 111, pp. 229-249, 2001.
[12] H. Cao and A. Evans, "An experimental study of the fracture resistance of bimaterial interfaces," Mechanics of materials, vol. 7, pp. 295-304, 1989.
[13] 傅勻, "可撓式AMOLED顯示器取下過程之應力分析, "碩士論文, 機械工程學系, 國立交通大學, 新竹, 2015.
[14] C. T. Sun and C. Jih, "On strain energy release rates for interfacial cracks in bi-material media," Engineering fracture mechanics, vol. 28, pp. 13-20, 1987.
[15] M. Gosz, J. Dolbow, and B. Moran, "Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks," International Journal of Solids and Structures, vol. 35, pp. 1763-1783, 1998.
[16] R. F. Gibson, Principles of composite material mechanics: CRC press, 2011.
[17] 黃鼎元, "利用雙材料破壞力學理論探討可撓式AMOLED取下行為, "碩士論文, 機械工程學系, 國立交通大學, 新竹, 2017.
[18] 鄭義宣, "探討面板級扇出封裝之翹曲及內部結構之應力分布, "碩士論文, 機械工程學系, 國立交通大學, 新竹, 2018.
[19] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and applications of finite element analysis vol. 4: Wiley New York, 1974.
[20] D. L. Logan, A first course in the finite element method: Cengage Learning, 2011.
[21] ANSYS® Mechanical APDL Product Launcher, Release 16.0, Help System, 12.9. Nodal and Centroidal Data Evaluation, ANSYS, Inc.
[22] K. Oota and M. Saka, "Cure shrinkage analysis of epoxy molding compound," Polymer Engineering & Science, vol. 41, pp. 1373-1379, 2001.
[23] L. E. Brus, "Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state," The Journal of chemical physics, vol. 80, pp. 4403-4409, 1984.
[24] T. Sameshima, S. Usui, and M. Sekiya, "XeCl excimer laser annealing used in the fabrication of poly-Si TFT's," IEEE Electron Device Letters, vol. 7, pp. 276-278, 1986.
[25] Nathan, G. R. Chaji, and S. J. Ashtiani, "Driving schemes for a-Si and LTPS AMOLED displays," Journal of Display Technology, vol. 1, pp. 267-277, 2005.
[26] T. Braun, S. Raatz, S. Voges, R. Kahle, V. Bader, J. Bauer, K.-F. Becker, T. Thomas, R. Aschenbrenner, and K.-D. Lang, "Large area compression molding for fan-out panel level packing," in Electronic Components and Technology Conference (ECTC), 2015 IEEE 65th, 2015, pp. 1077-1083.
電子全文 電子全文(網際網路公開日期:20231129)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔